• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Study of Singularity Theory From Fundamental Group

Research Project

Project/Area Number 09440039
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTOKYO METOROPOLITAN UNIVERSITY

Principal Investigator

OKA Mutsuo  Tokyo Metropolitan University, Department of Mathematics, Prof., 大学院・理学研究科, 教授 (40011697)

Co-Investigator(Kenkyū-buntansha) URABE Tosuke  Ibaragi University, Department of Mathematics, Prof., 理学部, 教授 (70145655)
SAEKI Osamu  Hiroshima University, Department of Mathematics, Associate Prof., 理学部, 助教授 (30201510)
SUWA Tatsuo  Hokkaido University, Department of Mathematics, Prof., 大学院・理学研究科, 教授 (40109418)
SHIMADA Ichiro  Hokkaido University, Department of Mathematics, Associate Prof., 大学院・理学研究科, 助教授 (10235616)
TOKUNAGA Hiroo  Kochi University, Department of Mathematics, Associate Prof., 理学部, 助教授 (30211395)
Project Period (FY) 1997 – 1999
KeywordsFundamental group / Zariski Pair / Galois covering / Characteristic Class / Knot / Singularity / Singular foliation / Elliptic Curves
Research Abstract

In this research, we tried to proceed a systematical study for Singularity theory, with a special viewpoint from fundamental group.
M. Oka, H. Tokunaga and I. Shimada studied the fundamental groups of the complement of plane curves with singularities. It was O. Zariski who pointed out the importance of the study of the fundamental group in this situation as every algebraic object can be understood as a branched covering over a projective space, with branching locus to be a hypersurface. However Zariski proved that the fundamental group of the complement of a hypersurface can be isomorphically cut down to the plane curve situation. Zariski gave an example of pair of sextics with 6 cups and with different fundamental groups. Oka found more examples of "Zariski pairs" using cyclic coverings. In fact, his cyclic covering transformation method produces infinitely many such examples. He found also a first example of Zariski triple in curves of degree 12. Shimada approached this problem from algebraic geometrical viewpoint, obtaining many interesting results. Tokunaga studied finite covering with non-abelian Galois groups, like dihedral groups, symmetric groups etc. One of his idea is to use the geometry of K3-surface and Mordell-Weil group. He found several interesting Zariski pairs in sextics with and without such non-abelian Galois covers. Urabe studied type of singularities in a plane curve of given degree. Saeki studied topology of singularities from the knot theory point of view. Suwa developed a new technique to study foliations on a singular varieties. In the process, he developed the theory of characteristic classes and he wrote a book which is a guide line of this region.

  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] Mutsuo OKA: "Geometry of plane curves via Tschirnhausen resolution tower"Osaka J. Math. 33. 1003-1034 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mutsuo OKA: "Moduli. space of smooth afine curves of a given genus with one place at infinity"Progress in Math. 162. 409-434 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mutsuo OkA: "Flex curves and their applications"Geometriae Dedicata. 75. 67-100 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] SUWA, Tatsuo: "An adjunction formula for local complete in tersections"Intern. J. Math.. 759-768 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] SUWA, Tatsuo: "Generalization of variations and Baum-Bott residues for holomorphic foliations on singular varieties"Intern. J. Math.. 10. 367-384 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Osamu Saeki: "Transveraality with deficiency and a conjecture of Sard"Trans. Amer. Math.Soc.. 350. 5111-5122 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Osamu Saeki: "On the Betti unmber of the union of two generic map images"Topology Appl. 95. 31-46 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tohsuke Urabe: "Dynkin Graphs, Gabrielou Graphs and triangle singularities"London Math. Soc. Lecture NoteSeries. 263. 163-174 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroaki Terao: "The determinant of a hypergeometric period matrix"Inventiones Math.. 128. 417-436 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroaki Terao: "The double Coxeter arrangements"Comment. Math. Helv.. 73. 237-258 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroo Tokunaga: "Some exanples of Zoriski pairs arising from certain elliptie K3 surfaces, II"Math, Z. 230. 389-400

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroo Tokunaga: "(2,3) torus sextics and the Albanese images of 6-fold Cyclic multiple planes"Kodai Math. J. 22. 222-242

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Jun O'Hara: "Asymptotic formulae of energies of polygonal knots"Proceedings of the Conference on Lou Dimensional Topology. 235-249 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mutsuo OKA: "Non-degenerate complete intersection singularity"Hermann. (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] SUWA, Tatsuo: "Indices of Vector Fields and Residen of Holomorphic Foliations"Hermann. (1998)

    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi