• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Singularly perturbed solutions of reaction-diffusion systems and concentration phenomena

Research Project

Project/Area Number 09440046
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionTOHOKU UNIVERSITY

Principal Investigator

TAKAGI Izumi  Graduate School of Science, Tohoku University, Professor, 大学院・理学研究科, 教授 (40154744)

Co-Investigator(Kenkyū-buntansha) NAGASAWA Takeyuki  Graduate School of Science, Tohoku University, Associate Professor, 大学院・理学研究科, 助教授 (70202223)
TSUTSUMI Yoshio  Graduate School of Science, Tohoku University, Professor, 大学院・理学研究科, 教授 (10180027)
NISHIURA Yasumasa  Research Institute for Electronic Science, Hokkaido University, Professor, 電子科学研究所, 教授 (00131277)
TACHIZAWA Kazuya  Graduate School of Science, Tohoku University, Lecturer, 大学院・理学研究科, 講師 (80227090)
IIDA Masato  Faculty of Education, Iwate University, Lecturer, 教育学部, 講師 (00242264)
Project Period (FY) 1997 – 1999
Keywordsreaction-diffusion system / singular perturbation / spike-layer solutions / transition layer / stability
Research Abstract

1. Takagi considered the construction and stability of stationary solutions of a reaction-diffusion system of activator-inhibitor type. With the cooperation of Wei-Ming Ni and Eiji Yanagida, he proved the following in the case of one dimensional domains : (i) The existence of stationary solutions concentrating at the boundary point when the activator diffuses slowly and the inhibitor diffuses very fast. (ii) If the relaxation parameter of the inhibitor reaction is small then these solutions are stable ; while they are unstable if the relaxation parameter is sufficiently large. (iii) A one-parameter family of periodic solutions concentrating around the boundary point bifurcates from the stationary solution.
Moreover, these results are generalized to higher dimensional domains in the case where the diffusion rate of the inhibitor is infinite.
2. Nishiura and Iida studied the behavior of solutions to the initial-boundary value problem for reaction-diffusion systems which generate sharp transition layers. Nishiura established a theory to explain the mechanism of self-replicating patterns. Iida constructed a reaction-diffusion system whose singular limit reduces to the classical Stefan problem.
3. Tsutsumi, Tachizawa and Nakano studied Schroedinger equations by applying techniques in real analysis. They obtained new results on the well-posedness of the initial value problem, and on the asymptotic distribution of eigenvalues.
4. Masuda and Nagasawa considered mainly the behavior of solutions to nonlinear diffusion equations. Masuda proved the maximum principle for weak solutions. Nagasawa refined the energy inequality for weak solutions to the Navier-Stokes equations.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] W.-M.Ni,I.Takagi & J.Wei: "On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem : Intermediate solutions"Duke Mathematical Journal. 94. 597-618 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Nishiura and D.Ueyama: "A skeleton structure of self-replicating dynamics"Physica D. 130. 73-104 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ozawa,K.Tsutaya & Y.Tsutsumi: "Well-posedness in energy space for the Cauchy problem of Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions"Math.Ann.. 313. 127-140 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nagasawa: "Construction of weak solutions of the Navier-Stokes equations on Riemannian manifold by minimizing variational functionals"Adv.in Math.Sci.Appl.. 9. 51-71 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Masuda: "Non-existence of nontrivial solutions of nonlinear Laplace equations"Nonlinear Anal.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Tachizawa: "On weighted dyadic Carleson's inequalities"J.Inequalities Appl.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] W.-M. Ni, I. Takagi and J. Wei: "On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem : Intermediate solutions"Duke Mathematical Journal. 94. 597-618 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Nishiura and D. Ueyama: "A skeleton structure of self-replicating dynamics"Physica D. 130. 73-104 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Ozawa, K. Tsutaya, and Y. Tsutsumi: "Well-posedness in energy space for the Cauchy problem of Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions"Math. Ann.. 313. 127-140 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Nagasawa: "Construction of weak solutions of the Navier-Stokes equations on Riemannian manifolds by minimizing variational functionals"Adv. Math. Sci. Appl.. 9. 51-71 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Tachizawa: "On weighted dyadic Carleson's inequalities"J. Inequalities Appl.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Masuda: "Non-existence of nontrivial solutions of nonlinear Laplace equations"Nonlinear Analysis, T.M.A.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi