• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

An Over-all Mathematical Study of the Nonlinear Boltzmann Equation and Fluid Dynamical Equations

Research Project

Project/Area Number 09440051
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionYokohama National University (1999)
Tokyo Institute of Technology (1997-1998)

Principal Investigator

UKAI Siji  Yokohama National University, Faculty of Engineering, Professor, 工学部, 教授 (30047170)

Co-Investigator(Kenkyū-buntansha) HIRANO Norimihi  Yokohama National University, Faculty of Engineering, Professor, 工学研究科, 教授 (80134815)
TAKANO Seiji  Yokohama National University, Faculty of Engineering, Professor, 工学部, 教授 (90018060)
KITADA Yasuhiko  Yokohama National University, Faculty of Engineering, Professor, 工学部, 教授 (70016145)
SHIOJI Naoki  Yokohama National University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (50215943)
KONNO Norio  Yokohama National University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (80205575)
Project Period (FY) 1997 – 1999
KeywordsBoltzmann equation / Boltzmann-Grad limit / asymptotic analysis / shock wave / periodic solution / non-relativistic limit / Euler equation / general outflow condition
Research Abstract

Boltzmann equation :
(1) A simple existence proof of the Boltzmann-Grad limit by means of the Cauchy-Kowalevskaya theorem and the establishement of an asymptotic relation between the Boltzmann hierachy and the macroscopic fluid equation (commpressible Euler equation) by the same theorem.
(2) An existence theorem of travering (shock) wave solutions and a solvability condition for the stationary problem in the half space, both for the discrete velocity model, which are expected to make an contribution to the study of boundary and shock layer structures of the Boltzmann equation.
(3) An existence theorem of time-periodic solutions of the Boltzmann equation, being a first analysis of the nonlinear acoustics of that equation.
Macroscopic fluid dynamical equation :
(1) Non-relativistic limits of solutions of the relativisitic Euler equation. In the case of the 1D flat Minkowski space-time, time-global weak solutions are shown to converge globally in time stongly in LィイD11ィエD1, as the speed of light tens to infinity, and similary for the case of the 3D non-flat space-time, but the convergence is time-local.
(2) A time-global existence theorem of weak and srong solutions to the Stokes approximation equation for the storngly viscous commonpressible fluid flow. While the equation has a strong nonlinearity, initial data can be arbitrarily large.
(3) An existence proof of the stationary solution to the heat covection equation without the unphysical condition of the zero outflow on each component of boundaries of the domain.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] C. Bose, R. Illner and S. Ukai: "On shock wave solutions for discrete velocity models of the Boltzmann equation"Transport Theory and Stat. Phys.. 27. 35-66 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] L. Min, A. V. Kazhikhov and S. Ukai: "Global solutions to the Cauchy problem for the Stokes approximation equation for a compressible fluid"Commun. Partial Differential Equations. 23. 985-1006 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] L. Min and S. Ukai: "Non-relativistic global limits of weak solutions of the relativistic Euler equation"J. Math. Kyoto Univ.. 38. 527-537 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Ukai: "On the half-space problem for the discrete velocity model of the Boltzmann equation"Series on Advances in Mathematics for Applied Sciences, Vol.48. World Scientific, singapore-New Jersey. 160-174 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Morimoto and S. Ukai: "Perturbation of the Boussinesq flow in an annular domain with general outflow condition"Navier-Stokes equations : theory and numerical methods (R. Salvi Ed.), Pitman Research Notes in Math.. 388. 67-75 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] C. Bose, R. Illner and S. Ukai: "On shock wave solutions for discrete velocity models of the Boltzmann equation"Transport Theory and Stat. Phys.. 27(1). 35-66 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] L. Min, A. V. Kazhikhov and S. Ukai: "Global solutions to the Cauchy problem for the Stokes approximation equation for a compressible fluid"Commun. Partial Differential Equations. 23. 985-1006 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] L. Min and S. Ukai: "Non-relativistic global limits of weak solutions of the relativistic Euler equation"J. Math. Kyoto Univ.. 38. 525-537 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Ukai: "On the half-space problem for the discrete velocity model of the Boltzmann equation, Advances in Nonlinear Partial Differential Equations and Stochastics (eds. S. Kawashima and T. Yangisawa)"Series on Advances in Mathematics for Applied Sciences, Vol. 48, World Scientific, Singapore-New Jersey. 160-174 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Morimoto and S. Ukai: "Perturbation of the Boussinesq flow in an annular domain with general outflow condition"Navier-Stokes equations : theory and numerical methods (ed. R. Salvi.), Pitman Research Notes in Math., Vol. 388, Pitman Adv. Publ. Program, Boston-London. 67-75 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi