• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Many-Sided study of Selberg type integrals

Research Project

Project/Area Number 09440064
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

KANEKO Jyoichi  Kyushu University, Graduate School of Mathematics, Associate Professor, 大学院・数理学研究科, 助教授 (10194911)

Co-Investigator(Kenkyū-buntansha) KAZAMA Hideaki  Kyushu University, Graduate School of Mathematics, Professor, 大学院・数理学研究科, 教授 (10037252)
Project Period (FY) 1997 – 1998
KeywordsSelberg type integral / deformed Solberg type / twisted (co-) homology group / Gauss-Marin system / Jack polynomial / A-hypergeometric function / A-hypergeometric ideal / weakly 1-complete manifold
Research Abstract

In our research, we mainly studied the twisted (co-)homology groups and the holonomic systems attached to the (deformed) Selberg type integrals. We regard the integral as the dual pairing of the twisted homology group and the twisted cohomology group, and so the fundamental problem is to construct the bases of these (co-)homology groups. We explicitly constructed the bases of the (co-)homology groups, and noticed that these bases are nothing but the ones obtained from the beta-nbc bases due to Falk and Terao. We also calculated the Gauss-Manin system explicitly in graph-theoretical terms (Duke Math. J.). Our de-formed Selberg type integral is also an example of A-type hypergeometric functions due to Gelfand-Kapranov-Zelevinsky. We have been investigating the so-called A-hypergeometric ideal describing the holonomic system of the integral, especially on its Cohen-Macaulay property and construction of the basis.
The conjecture of Forrester predicts that the value of certain generalization of the original Selberg integral is also given by an explicit GAMMA product. We verified this in some cases by using the integration formula of Jack polynomials (Contemporary Math., to appear). We have been currently, working on this conjecture by employing Dunkl operators.
Kazama (with S.Takayama) solved in the negative the long-standing conjecture of S.Nakano concerning **-problem on weakly 1-complete manifolds (Nagoya Math. J., to appear). They also investigated related problems on complex Lie groups (Nagoya Math. 3., to appear).

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] J.Kaneko: "On Forrester's generalization of Morris constant term identity" Contemporary Math.to appear.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Kaneko: "A_1Ψ_1 summation theorem for Macdonald polynouials" The Romanujau J.2. 397-386 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Kaneko: "The Gauss-Maniu connection of the integral of the deformed difference product" Duke Math. J.92. 355-379 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Kaneko: "Constant term ideutities of Forrester-Zeilberger-Cooper" Discrete Math.173. 79-90 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kazama: "Some remarks on complex Lie groups" Nagoya Math. J.to appear.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kazama: "∂∂-problem on weakly 1-complete Kahler manifolds" Nagoya Math. J.to appear.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Kaneko: "On Forrester's generalization of Morris constant term identity" Contemporary Math.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Kaneko: "A_1PSI_1 summation theorem for Macdonald polynomials" The RamamjanJ.2. 379-386 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Kaneko: "The Gauss-Maniv counection of the integral of the deformed difference product" Duke Math.J.92. 355-379 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Kaneko: "Constant term identities of Forrester-Zeilberger-Cooper" Discrete Math.173. 79-90 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kazama: "Some remarks on conplex Lie growps" Nagoya Math.J.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kazama: "*^*_-problem on wealily 1-complete kabler manifolds" Nagoya Math.J.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi