• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Systems Analysis by Valuated Matroids

Research Project

Project/Area Number 09450042
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Engineering fundamentals
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

MUROTA Kazuo  Research Institute for Mathematical Sciences, KYOTO UNIVERSITY Professor, 数理解析研究所, 教授 (50134466)

Co-Investigator(Kenkyū-buntansha) SUGIHARA Masaaki  Nagoya University, School of Engineering Professor, 工学部, 教授 (80154483)
FURIHATA Daisuke  Research Institute for Mathematical Sciences, KYOTO UNIVERSITY Research Associate, 数理解析研究所, 助手 (80242014)
OKAMOTO Hisashi  Research Institute for Mathematical Sciences, KYOTO UNIVERSITY Professor, 数理解析研究所, 教授 (40143359)
IWATA Satoru  Osaka University, Faculty of Engineering Science Associate Professor, 基礎工学部, 助教授 (00263161)
Project Period (FY) 1997 – 1999
Keywordsvaluated matroid / mixed polynomial matrix / combinatorial canonical form / transfer function matrix / RCG network / group symmetry / distributed system
Research Abstract

This project aims at developing algebraic and combinatorial methods for mathematical analysis of engineering systems by means of valuated matroid theory. The following results have been obtained.
(1) Practical improvements are made on the algorithm for constructing the combinatorial canonical form of mixed matrices, so that the mathematical results on mixed matrices can be utilized in systems analysis. The improved algorithm is implemented and made available through internet.
(2) The duality theorem for valuated matroids implies that a mixed polynomial matrix can be brought into a canonical form (a proper rational matrix with additional nice properties) by a suitable change of variables and equations. The algorithm for the valuated matroid duality is tailored to the canonical form of a mixed polynomial matrix.
(3) The relationship between the matroid parity problem and the solvability of RCG (electrical) networks is investigated in detail. The solvability of RCG networks is formulated in terms of mixed skew-symmetric matrices, and the solvability condition is derived with the aid of the duality theorem for a pair of linear delta matroids. This leads to an efficient algorithm for the solvability of RCG networks.
(4) Controllability of distributed control systems with symmetry is discussed under the genericity assumption under symmetry. The problem is formulated using the standard framework of group representation theory and a bound on the number of functioning modules necessary for controllability is derived by means of the Rado-Perfect theorem in matroid theory.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] K.Murota: "Matroid Valuation on Independent Sets"Journal of Combinatorial Theory (B). 69. 59-78 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Murota: "Fenchel-type Duality for Natroid Valuations"Mathematical Programming. 82. 357-375 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Murota and M.Scharbrodt: "Computing the Combinatorial Canonical Form of a Layered Mixed Matrix"Optimizaton Methods and Software. 10. 373-391 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Murota: "Submodular Flow Problem with a Nonseparable Cost Function"Combinatorica. 19. 87-109 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Tanaka and K.Murota: "Fault-Tolerance of Control Systems with Dihedral Group Symmetry"Transactions of Society for Intrument and Control Engineers. 35・6. 806-813 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Tanaka and K.Murota: "Quantitative Analysis for Controllability of Symmetric Control Systems"International Jounal of Control. 73・3. 254-264 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Murota: "Matrices and Matroids for Systems Analysis (Algorithms and Combinatorics 20)"Springer-Verlag. 483 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 室田一雄: "離散凸解析,離散構造とアルゴリズムV(藤重 悟 編) (第2章)"近代科学社. 51-100 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K. Murota: "Matroid Valuation on Independent Sets"Journal of Combinatorial The-ory (B). 69. 59-78 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Murota: "Fenchel-type Duality for Matroid Valuations"Mathematical Programming. 82. 357-375 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Murota and M. Scharbrodt: "Computing the Combinatorial Canonical Form of a Layered Mixed matrix"Optimization Methods and Software. 10. 373-391 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Murota: "Submodular Flow Problem with a Nonseparable Cost Function"Combinatorica. 19. 87-109 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Tanaka and K. Murota: "Fault-Tolerance of Control Systems with Dihedral Group Symmetry"Transactions of Society for Instrument and Control Engineers. 35-6. 806-813 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Tanaka and K. Murota: "Quantitative Analysis for Controlla-bility of Symmetric Control Systems"International Journal of Control. 73-3. 254-264 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Murota: "Matrices and Matroids for Systems Analysis (Algorithms and Combinatorics 20)"Springer-Verlag. 483 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Murota, Discrete Convex Analysis: "Discrete Structures and Algorithms, V S. Fujishige, ed."Kindai-Kagaku-sha (Chap. 2,). 51-100 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi