• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Effective Use of a priori Knowledge in Solving Inverse Problems

Research Project

Project/Area Number 09450168
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field 計測・制御工学
Research InstitutionTokyo Institute of Technology

Principal Investigator

KOSUGI Yokio  Tokyo Institute of Technology, Frontier Collaborative Research Center, Professor, フロンティア創造共同研究センター, 教授 (30108237)

Co-Investigator(Kenkyū-buntansha) KAMEYAMA Keisuke  University of Tsukuba, Institute of Information Sciences and Electronics, Center for Tsukuba Advanced Research Alliance, Assistant Professor, 電子・情報工学系, 講師 (40242309)
SAECHOUT Vichai  Frontier Collaborative Research Center, Research Associate, フロンティア創造共同研究センター, 助手 (10235096)
OMATA Tohru  Interdisciplinary Graduate School of Science and Engineering, Associate Professor, 大学院・総合理工学研究科, 助教授 (10262312)
Project Period (FY) 1997 – 2000
Keywordsequivalent dipole / positron emission tomography / network inversion / dynamic regularization / a priori knowledge / impedance tomography / surface reconstruction / stereo images
Research Abstract

In this research, we evaluated the effectiveness of dynamic regularization used in solving inverse problems, such as estimating the neural activities from electrical potential distribution on the scalp, or positron emission tomograpy (PET) data. The dynamic regularization is a technique to change the regularization parameter, according to the progress of iteration in operating the network inversion.
In the case of estimating the equivalent current dipoles from evoked potentials, we have realized the estimation of three dipoles simultaneously by introducing the dynamic regularization, for indicating the trace of cortical activities as a locus of a triangle with three dipoles located on the vertices.
In case of the visualization of FDG distribution in the brain, we introduced a hidden Markov model into the FDG transfer model for utilizing the a priori knowledge of temporal continuity of the FDG concentration in cach compartment.
For the case of obtaining conductivity profile, from the electrical potential data, we also made use of the dynamic regularization technique, to stabilize the electrical impedance tomography results.
In addition to the above, we expanded our dynamic regularization technique to the inverse problems of reconstructing a 3-D surface, from a set of stereo images. In this problem, we developed a new network which automatically realizes the corresponding points acquisition as well as generating the smooth surface in the iterative operation.
Through the above examples, we showed the effectiveness of the dynamic regularization built in with the iterative procedure of inverse problem solvers.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Y.Kosugi,M.Sase,Y.Suganami,N.Uemoto,T.Momose and J.Nishikawa: "Neural Network-Based PET Image Reconstruction"Methods of Information in Medicine. 36. 329-331 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小杉幸夫,植本尚子,小川毅彦: "ネットワークインバージョンにおける動的正則化"電子情報通信学会論文誌. J81-DII・7. 1639-1646 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Naoko Uemoto and Yukio Kosugi: "Dynamic Regularization for the Restoration of PET Images"Stems and Computers in Japan. 30・8. 23-31 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Hayashi,Y.Kosugi and B.He: "A Network Inversion Technique for Estimating Equivalent Dipole Description of Visual Evoked Potential"Method of Information in Medicine. 39. 134-137 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 宇都有昭,小杉幸夫,土居原健: "区分的曲面構築法によるステレオ地理画像に基づく地形モデル生成"電子情報通信学会技術報告. N98-63. 7-14 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 竹前忠,東好宏,小杉幸夫: "磁気併用四電極法による電気インピーダンス・トモグラフィ"医用電子と生体工学. 38・3. 246-249 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kosugi, M.Sase, Y.Suganami, N.Ucmoto, T.Momose and J.Nishikawa: "Neural Network-Based PET Image Reconstruction"Methods of Information in Medicine. 36. 329-331 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kosugi, N.Uemoto, T.Ogawa: "Dynamic Regularization in the Network Inversion"Trans. IEICE. J81-DII-7. 1639-1646 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Naoko Uemoto, Yukio Kosugi: "Dynamic Regularization for the Restoration of PET Images"Stems and Computers in Japan. 30-8. 23-31 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Hayashi, Y.Kosugi and B.He: "A Network Inversion Technique for Estimating Equivalent Dipole Description of Visual Evoked Potential"Method of Information in Medicine. 39. 134-137 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Uto, Y.Kosugi, K.Doihara: "Geographic Surface-Model Generation from Stereo Images based on the Segmented Surface Reconstruction Method"IEICE Technical Report. N98-63. 7-14 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Takemae, Y.Higashi, Y.Kosugi: "Electrical Impedance Tomography Applying the Tetrapolar Circuit Method Using Magnetic Field"Jap. J.of Mod. Elect. & Biolo. Eng.. 38-3. 246-249 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi