• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Arithmetic of Abelian Varieties

Research Project

Project/Area Number 09640003
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTOHOKU UNIVERSITY

Principal Investigator

NAKAMURA Tetsuo  Tohoku Univ., Graduate School of Science, Prof., 大学院・理学研究科, 教授 (90016147)

Co-Investigator(Kenkyū-buntansha) YAMAGAMI Shigeru  Tohoku Univ., Graduate School of Science, Assoc.Prof., 大学院・理学研究科, 助教授 (90175654)
TAKAHASHI Toyofumi  Tohoku Univ., Graduate School of Science, Prof., 大学院・理学研究科, 教授 (20004400)
Project Period (FY) 1997 – 1998
Keywordselliptic curve / abelian variety / complex multiplication / torsion point / Hecke character / Duality / tensor category
Research Abstract

1. Torsion points of elliptic curves
Ross(1994) proposed the following question : In an isogeny class of ellptic curves over a number field, does there exist an ellptic curve with cyclic rational torsion group? We showed that the answer is affirmative if elliptic curves have no complex multiplication. The following related problems were also investigated : (1) The relation between the number of roots of unity in the field of definition and the minimal order of the torsion group in an isogeny class. (2) the case of complex multiplication.
2. Abelian Varieties obtained from elliptic curves with complex multiplication
Let E be an elliptic curves with complex multiplication by an imaginary quadratic field K defined over the absolute class field of K.Let B be an abelian variety obtained from E by re-stricting scalars to K.We studied the structure of B under the assumption that E is a K-curve. (1) B is a simple CM-type abelian variety if and only if the Hecke character of E is obtained by that of K.(2) Otherwise, B is isogenous to a product of simple no CM-type abelian variety.
3. Singular Abelian surfaces over the rationals
We studied on a classification and a construction of such surfaces.
4. On a fusion algebras associated with finite abelian groups
Concerning the duality of finite abelian groups, we completely classified the equivalence classes of tensor categories with fusion rules.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] T.Nakamura: "Cyclic torsion of elliptic curves" Proc, Amer.Math.Soc.印刷中. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nakamura: "On characteristic polynomials of formal groups over finite fields" Math.Nachrichten. 188. 289-299 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Yamagami 他: "Tensor categories with fusion rules of self-duality for finite abelian groups" Journal of Algebra. 209. 692-707 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Yamagami 他: "On fusion algebras associated to finite group actions" Pacific J.Math.177. 269-290 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nakamura: "Cyclic torsion of elliptic curves" Proc.Amer.Math.Soc.(in print). (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Nakamura: "On characteristic polynomials of formal groups over finite fields" Math.Nachr.188. 289-299 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Yamagami and D.Tambara: "Tensor categories with fusion rules of self-duality for finite abelian groups" Journal of Algebra. 209. 692-707 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Yamagami and H.Kosaki: "On fusion algebras associated to finite group actions" Pacific J.Math.177. 269-290 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi