• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Representation theory and combinatorics of classical groups, quantum groups and Hecke algebras

Research Project

Project/Area Number 09640012
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

TERADA Itaru  University of Tokyo, Graduate School of Mathematical Sciences, Associate Professor, 大学院・数理科学研究科, 助教授 (70180081)

Co-Investigator(Kenkyū-buntansha) KOBAYASHI Toshiyuki  University of Tokyo, Graduate School of Mathematical Sciences, Associate Profess, 大学院・数理科学研究科, 助教授 (80201490)
OKADA Soichi  Nagoya University, Graduate School of Mathermatics, Associate Professor, 大学院多元数理科学研究科, 助教授 (20224016)
ARIKI Susumu  Tokyo University of Mercantile Marine, Department of Mathematics, Associate Prof, 商船学部, 助教授 (40212641)
TANAKA Yohei  Tokyo University of Mercantile Marine, Department of Mathematics, Associate Prof, 商船学部, 助教授 (00135295)
KOIKE Kazuhiko  Aoyama Gakuin University, Department of Mathermatics, Professor, 理工学部, 教授 (70146306)
Project Period (FY) 1997 – 1998
Keywordscombinatiorics / representation theory / classical groups / Young diagrams / tableaux / Robinson-Schensted correspondence / Brauer diagrams / nilpotent matrices
Research Abstract

In a previous project, we gave an interpretation of a Robinson-Schensted-type correspondence between updown tableaux and Brauer diagrams, first discovered by Stanley, using alternating bilinear forms, flags and nilpotent matrices. In the current project, we obtained a more thorough result, namely we also showed the irreducibility of the variety formed by all triples : a nilpotent matrix, a flag and a nondegenerate alternating bilinear form such that the latter two are infinitesimally fixed by the first. This gives a closer parallelism of our result with Steinberg's interpretation of the original Ronbinson-Schensted correspondence. Similar geometric interpretations of other Robinson-Schensted-type correspondences are yet to be intestigated.
In persuing the construction of a set of tableaux and a Robinson-Schensted-type correspondence which would combinatorially describe the decomposition of the tensor powers of the Weil representation of sp (2n, C), we gave a basis of combinatorial treatment by extending the use of specialization homomorphisms to certain infinite sums of universal characters. We assisted T.Roby with obtaining results for the stable region where the tensor power is large relative to the rank, and also for the case of any power with rank 2, which he nearly completed. The method is yet to be generalized to the case of any power with any rank.
Further obtained were : results on characters of the classical groups by K.Koike ; results concerning the minor summation formulas and rhombus tilings by S.Okada ; results on multiplicity-free and discrete decomposabilities of certain infinite-dimensional representations of reductive groups by T.Kobayashi.

  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] 小池和彦: "Qn representation of the classical groups" Amer.Math.Soc.Transl.Ser.2. 183. 79-100 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小池和彦: "Representations of spinor groups and difference characters of SO(2n)" Adv.Math.128. 40-81 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小池和彦: "Principal specializations of the classical groups and q-analogs of the dimension formulas" Adv.Math.125. 236-274 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 岡田聡一: "Applications of minor summation formulas to rectangular-shaped representations of classical groups" J.Algebra. 205. 337-367 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 岡田聡一(C.Krattenthalerと共著): "The number of rhombustilings of a “punctured" hexagon and the minor summation formula" Adv.in Appl.Math.21. 381-404 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 岡田聡一(M.Noumi,K.Okamoto,M.Hmemuraと共著): "Special polynomials associated with the Painlev'e equations II" Proceedings of the Taniguchi Symposium 1997 “Integrable Systems and Algebraic Geometry". 349-372 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行: "Discrete decomposability of the restriction of Aq(λ) with respect to reductive subgroups II - micro-local analysis and asymptotic K-support" Ann.of Math.147. 709-729 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行: "Discrete series regrosentations for the orbit spaces arising from two involutions of real reductive Lie groups" J.Funct.Anal.152. 100-135 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行: "Discrete decomposability of the restriction of Aq(λ) with respect to the reduction subgroups III - restriction of Harish-chandra modules and asseciated vaviettes" Invent.Math.131. 22-256 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行 (B.Orstedと共著): "Conformd geometry and branching laws for unitary representations attached to minimal nilpotent orbits" C.R.Acad.Sci.Paris. 326. 925-930 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 寺田 至(原田耕一郎氏と共著): "群論(岩波講座「現代数学の基礎」11巻所収)" 岩波書店, 240 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行 (Iは大島利雄氏と共著): "Lie群とLie環I,II(岩波講座「現代数学の基礎」17巻)" 岩波書店, 525 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuhiko Koike: "On representation of the classical groups" Amer.Math.Soc.Transl.Ser.2183. 79-100 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuhiko Koike: "Representations of spinor groups and difference characters of SO (2n)" Adv.Math.128. 40-81 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuhiko Koike: "Principal specializations of the classical groups and q-analogs of the dimension formulas" Adv.Math.125. 236-274 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Soichi Okada: "Applications of minor summation formulas to rectangular-shaped representations of classical groups" J.Algebra. 205. 337-367 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Soichi Okada: "The number of rhombus tilings of a "punctured" hexagon and the minor summation formula (with C.Krattenthaler)" Adv.in Appl.Math.21. 381-404 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Soichi Okada: "Special polynomials associated with the Painleve equations II (with M.Noumi, K.Okamoto, H.Umemura)" Proceedings of the Taniguchi Symposium 1997 "Integrable Systems and Algebraic Geometry". 349-372 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshiyuki Kobayashi: "Discrete decomposability of the restriction of A_q (lambda) with respect to reductive sub-groups II-micro-local analysis and asymptotic K-suport" Ann.of Math.147. 709-729 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshiyuki Kobayashi: "Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups" J.Funct.Anal.152. 100-135 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshiyuki Kobayashi: "Discrete decomposability of the restriction of A_q (lambda) with respect to reductive sub-groups III-restriction of Harish-Chandra modules and associated varieties" Invent.Math.131. 229-256 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshiyuki Kobayashi: "Conformal geometry and branching laws for unitary representations attached to minimal nilpotent orbits (with B.Orsted)" C.R.Acad.Sci.Paris. 326. 925-930 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Itaru Terada: Group theory (chapters 1-3). Iwanami Shoten (publishers), 240 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshiyuki Kobayashi: Lie groups and Lie algebras (2 volumes). Iwanami Shoten (publishers), 525 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi