• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

On the roles of generalized linear CM modules in commutative ring theory

Research Project

Project/Area Number 09640025
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

YOSHIDA Ken-ichi  Graduate School of Mathematics, Nagoya University Assistant, 大学院・多元数理科学研究科, 助手 (80240802)

Co-Investigator(Kenkyū-buntansha) HASHIMOTO Mitsuyasu  Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (10208465)
OKADA Soichi  Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (20224016)
MUKAI Shigeru  Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (80115641)
Project Period (FY) 1997 – 1998
KeywordsLinear CM module / Buchsbaum module / multiplicity
Research Abstract

We have studied the generalization and the existence of linear maximal Cohen-Macaulay modules. As a result, we have proved some generalization theorem for linear maximal Cohen-Macaulay modules, and showed several properties of surjective Buchsbaum modules, the notion of which is a generalization of that of the linear Buchsbaum modules.
A finitely generated module M over a local ring A is called a linear Cohen-Macaulay A-module if the associated graded module of M is a graded Cohen-Macaulay module which has a graded linear resolution. The above definition of linear Cohen-Macaulay module is equivalent to the following condition : the minimal number of generators of M is equal to the multiplicity of M.The last condition enables us to define a generalization of linear Cohen-Macaulay modules. In fact, the head-investigator and the other investigators have generalized of linear maximal Cohen-Macaulay modules to linear maximal Buchsbaum modules in terms of I-invariant, which is a important invariant for Buchsbaum modules. One of our main results in this investigation is a generalization theorem for linear Buchsbaum modules (thus linear Cohen-Macaulay modules) ; using the notion of homological degree introduced by Vasconcelos, we have removed the above obstruction. On the other hand, since it is hard to deal with homological degrees, the problem with generalization of linear Buchsbaum modules using another invariants is left us.
Furthermore, throughout this investigation, we noticed that research of singularities is important and so that we began to study singularities of local rings with positive characteristic. We are now preparing papers about these research for publishing with Kei-ichi Watanabe (Nihon Univ.) .

  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] Ken-ichi Yoshida: "Confiniteness of local cohomology modules for ideals of dimension one" Nagoya Math.J.24-1. 179-191 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ken-ichi Yoshida: "A note on multiplicity of perfect modules of codimension one" Comm.Algebra. 25-9. 2807-2816 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ken-ichi Yoshida: "Tensor products of perfect modules and maximal surjective Buchsbaum modules" J.Pure Appl.Algebra. 123. 313-326 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ken-ichi Yoshida: "A generalization of linear Buchsbaum modules in terms of homological degree" Comm.Algebra. 26-3. 931-945 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 向井 茂: "Brill-Noether理論の非可換化と3次元Fano多様体" 数学. 49. 1-24 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shigeru Mukai: "Lattice theoretic construction of symplectic action on K3 surfaces" Duke Math.J.92. 593-603 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shigeru Mukai: "Duality of polarized K3 surfaces" in Proceedings of Euroconference on Algebraic Geometry,(K.Hulek and M.Reid ed.). 107-122 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Soichi Okada: "The number of rhombus tilings of a “punctured" hexagon and the mimor summation formula" Adv.in Appl.Math.21. 381-404 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Soichi Okada: "Applications of minor summation formulas to rectangular-shaped representations of classical groups" J.Algebra. 205. 337-367 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mitsuyasu Hashimoto: "Some remarks on index and generalized Loewy length of Gorenstein local ring" J.Algebra. 187-1. 150-162 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mitsuyasu Hashimoto: "Second syzygy of determinantal ideals generated by minors of generic symmetric matrices" J.Pure and Appl.Algebra. 115-1. 27-47 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ken-ichi Yoshida: "Cofiniteness of local cohomology modules for ideals of dimension one" Nagoya Math.J.24-1. 179-191 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ken-ichi Yoshida: "A note on multiplicity of perfect modules of codimension one" Comm.Algebra. 25-9. 2807-2816 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ken-ichi Yoshida: "Tensor products of perfect modules and max-imal surjective Buchsbaum modules" J.Pure Appl.Algebra. 123. 313-326 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ken-ichi Yoshida: "A Generalization of linear Buchsbaum modules in terms of homological degree" Comm.Algebra. 26-3. 931-945 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shigeru Mukai: "Noncommutativizability of Brill-Noether theory and 3-dimensional Fano varieties" Suugaku. 49. 1-24 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shigeru Mukai: "Lattice theoretic construction of symplectic ac-tion on K3 surfaces" Duke Math.J.92. 593-603 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shigeru Mukai: "Duality of polarized K3 surfaces" in Proceedings of Euroconference on Algebraic Geometry (K.Hulek and M.Reid ed. 107-122 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Soichi Okada: "The number of rhombus tilings of a "punctured" hexagon and the minor summation formula" Adv.in Appl. Math.21. 381-404 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Soichi Okada: "Applications of minor summation formulas to rectangular-shaped representations of classical groups" J.Algebra. 205. 337-367 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mitsuyasu Hashimoto: "Some remarks on index and generalized Loewy length of Gorenstein local ring" J.Algebra. 187-1. 150-162 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mitsuyasu Hashimoto: "Second syzygy of determinantal ideals generated by minors of generic symmetric matrices" J.Pure and Appl.Algebra. 115-1. 27-47 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi