• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

COMBINATORIAL SEMIGROUP THEORY AND ITS APPLICATIONS

Research Project

Project/Area Number 09640038
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionSHIMANE UNIVERSITY

Principal Investigator

UEDA Akira  SHIMANE UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING ASSOCIATED PROFESSOR, 総合理工学部, 助教授 (70213345)

Co-Investigator(Kenkyū-buntansha) KAMIYA Noriaki  SHIMANE UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING ASSOCIATED PROFESSOR, 総合理工学部, 助教授 (90144691)
KIKKAWA Michihiko  SHIMANE UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING PROFESSOR, 総合理工学部, 教授 (70032430)
MIWA Takuo  SHIMANE UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING PROFESSOR, 総合理工学部, 教授 (60032455)
ENDO Michiro  SHIMANE UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING ASSOCIATED PROFESSOR, 総合理工学部, 助教授 (40211916)
IMAOKA Teruo  SHIMANE UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING PROFESSOR, 総合理工学部, 教授 (60032603)
Project Period (FY) 1997 – 1998
Keywordscombinatorial semigroup theory / automaton / algorithm / amalgamation base / valuation ring / universal algebra / loop / representation
Research Abstract

1. Decision problem whether or not a finite semigroup has a certain property (P) has been studied by many mathematicians, and Spair and Guba proved that for many properties (P) the decision problem is undecidable. Concerning this problem, Shoji proved that there exists an algorithm to decide whether or not a finite semigroup has the representation extension property. Furthermore, shoji proved the following results
(1) For completely 0-simple semigroup S, the following are equivalent.
(i) S is a special amalgamation base.
(ii) S is either left absolutely flat or right absolutely flat.
(iii) S satisfies either left annihilator condition or right annihilator condition.
(2) For finite commutative semigroup T, the following are equivalent.
(i) T is a completely special amalgamation base.
(ii) T is completely amalgamation base.
(iii) T is E-separable.
2. As applications of combinatorial semigroup theory we obtained the following results.
(1) Imaoka investigated about representations of generalized inverse *-semigroups.
(2) Ueda studied about Prufer orders in simple Artinian rings. In particular, Ueda characterized branched and unbranched prime ideals of Prufer orders.
(3) Kondo gave an axiom system of a non-linear 4-valued logic , whose Lindenbaum algebra is the de Morgan algebra with implication.
(4) Miwa obtained a new characterization of superparacompact spaces. Miwa also defined new covering properties and studied invariance and inverse invariance under various maps of these covering properties.
(5) Kikkawa introduced the algebraic concept of projectivity of a Lie triple algebra and investigated about properties of Lie algebra of projectivity.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] Peter Higgins: "On special amalgamation bases" Proceedings of the conference on Semigroup and Applications. 87-96 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.E.Hall: "Representations and Amalgamation of Generalized Inverse* Semigroups" Semigroup Forum. 58. 126-141 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hidetoshi Marubayashi: "Idealizers of Semi-hereditary v-orders" Mathematica Japonica. 45. 51-56 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Michiro Kondo: "Characterization theorem of 4-valued de Morgan logic" Memoirs of the faculty of science and engineering Shimane University. 31. 73-80 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Michiro Kondo: "A note on the regular projections in equivalential algebras" Far East Journal of Mathematical Science. 1・2. 167-174 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] D.Buhagiar: "On superparacompact and Lindelof Go-spaces" Houston Journal of Mathematics. 24・3. 443-457 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Imaoka: "Proceedings of the Workshop on Language, Computation and Algebra" Kobe University, 89 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hidetoshi Marubayashi: "Non-commutative Valuation Rings and Semi-Hereditary Orders" Kluwer Academic Publisher, 191 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Peter Higgins: "On special amalgamation bases" Proceedings of the conference on Semigroup and Applications, World Scientific. 87-96 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.E.Hall: "Representations and Amalgamation of Generalized Inverse ^*-Semigroups" Semigroup, Forum. Vol.58. 126-141 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hidetoshi Marubayashi: "Idealizers of Semi-hereditary-v-orders" Mathematica Japonica. Vol.45. 51-56 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Michiro Kondo: "Characterization theorem of 4-valued de Morgan logic" Memoirs of the faculty of science and engineering Shimane University, Ser.B. Vol.31. 73-80 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Michiro Kondo: "A note on the regular projections in equivalential algebras" Far East Journal of Mathematical Science. Vol.1 (2). 167-174 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] D.Buhagiar and T.Miwa: "On superparacompact and Lindelof GO-spaces" Houston Journal of Mathematics. Vol.24, No.3. 443-457 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Imaoka: Proceedings of the Workshop on Language, Computation and Algebra, Kobe University. 89 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hidetoshi Marubayashi, Haruo Miyamaoto and Akira Ueda: "Non-commutative Valuation Rings and Semi-Heraditary Orders" Kluwer Academic Publishers. 191 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi