• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

On Metaplectic Forms of Classical Groups

Research Project

Project/Area Number 09640050
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionUniversity of the Ryukyus

Principal Investigator

SUZUKI Toshiaki  University of the Ryukyus Faculty of Science Department of Mathematical Science Professor, 理学部数理科学科, 教授 (50128485)

Co-Investigator(Kenkyū-buntansha) KOSUDA Masashi  University of the Ryukyus Faculty of Scince Department of Mathemathical Science, 理学部数理科学科, 助手 (40291554)
SUGA Shu-ichi  University of the Ryukyus Faculty of Science Department of Mathematical Scince A, 理学部数理科学科, 助教授 (30206388)
Project Period (FY) 1997 – 1998
KeywordsMetaplectic group / Automorphic forms / Eisenstein series / Distinguished representations
Research Abstract

(1) We established a relation between Dirichlet series obtained as Fourier coefficients of metaplectic Eisenstein series and Rankin-Selberg convolutions of metaplectic forms.
(2) Unramified distinguished representations were determined and their Whittaker functins were explicitely given in some case. It was shown that the Rankin-Selberg convolutions of metaplectic forms against ditinguished metaplectic forms have Euler product. We propose a conjecture that auto-morphic distinguished representations on a n-fold metaplectic group of GL(nr) are parametrized by automorphic cuspidal representations of GL(r).
(3) We give a explicite formula for the dimension of Whittaker functionals on supercuspidal representations of metaplectic groups over a local field. Hence distinguished supercuspidal representations of metaplectic groups were determined.
(4) We proved the existence of a maximal compact subring of a local field with respect to 1-lilbert symbol. Hence it follows the existence of an open compact subgroup of a metaplectic group over a local field, which has very good properties.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] 鈴木利明: "Metaplectic Eisenstein series and the Bump-Hoffrtein cenjecture" Duke Math.J. 90(3). 577-630 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 鈴木利明: "Distin guished nepvesentations of metaplectic groups" American J.of Math.120. 723-755 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小須田 雅: "The homfly invariant of closed tangles" Ryukyu Math.J. 10. 1-22 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小須田 雅: "The irreducible repvesentations of categories" Contemporary Math.224. 151-167 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Toshiaki SUZUKI: "Metaplectic Eisenstein series and the Bump-Hoffstein conjecture" Duke Math. J.90 (3). 577-630 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshiaki SUZUKI: "Distinguished representations of metaplectic groups" American J.of Math. 120. 723-755 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masashi KOSUDA: "The homfly invariant of closed tangles" Ryukyu Math.J.10. 1-22 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masashi KOSUDA: "The irreducible representations of categories" Contemporary Math.224. 151-167 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi