• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

P-adic L-functions of modular forms and the Euler systems

Research Project

Project/Area Number 09640051
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTOKYO METROPOLITAN UNIVERSITY

Principal Investigator

KURIHARA Masato  Tokyo Metropolitan University Associate Professor, 理学研究科, 助教授 (40211221)

Co-Investigator(Kenkyū-buntansha) KURANO Kazuhiko  Tokyo Metropolitan University Associate Professor, 理学研究科, 助教授 (90205188)
NAKAMURA Ken  Tokyo Metropolitan University Professor, 理学研究科, 教授 (80110849)
MIYAKE Katsuya  Tokyo Metropolitan University Professor, 理学研究科, 教授 (20023632)
KATO Kazuya  Tokyo University Professor, 数理科学研究科, 教授 (90111450)
Project Period (FY) 1997 – 1998
Keywordsideal class group / Iwasawa theory / Greenberg conjecture / maximal abelian extension
Research Abstract

We obtained several results, using the argument in the theory of Euler systems. First of all, we showed that the ideal class group of the maximal real subfield of the field which is obtained by adjoining all the roots of unify to a totally real number field, is trivial. Especially, every ideal of a real abelian field becomes principal in some real abelian field. In other words, the ideal class group of the field which is obtained by adjoing cos(ィイD72π(/)nィエD7) for all n > 0 over the rational number field is trivial. We also applied this method and obtained the triviality of the ideal class group of the maximal abelian extension of a number field which contains an imaginary quadratic field.
Next, using Deligne-Soule's cyclotomic elements, we made a simple criterion for Greenberg's conjecture on the ideal class groups of the cyclotomic ZィイD2pィエD2-extension of real abelian fields, and we carried out various numerical computation and checked the validity of this conjecture for small primes.

  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] Masato Kurihara: "The exponential homomorphisurs for the milnor K-groups"Journal reine angew Math. 498. 201-221 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masato Kurihara: "On the ideal class groups of the maximal real subfields of number fields"Journal of European Math Soc. 1. 35-49 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masato Kurihara: "The Iwasawa λ-invariants of real abelian fields and cyclotomic elements"Tokyo Journal of Math. 22-2. 259-277 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ken Nakamula: "Squares in binary recurrence sequences"Number Theory, Walter de Gruyter. 409-421 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuhiko Kurano: "On Macaulay fication obtained by a blowing-up"Journal of Algebra. 190. 405-434 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 黒川信重、栗原将人、斎藤毅: "数論3(岩波書店)"岩波書店. 237 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masato Kurihara: "The exponential homomorphisms for the Milnor K-groups"Journal reine angew Math. 498. 201-221 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masato Kurihara: "On the ideal class groups of the maximal real subfields of number fields"Journal Europian Math Soc. 1. 35-49 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masato Kurihara: "The Iwasawa λ-invariants of real abelian fields and cyclotomic elements"Tokyo Journal of Math. 22-2. 259-277 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ken Nakamula: "Squares in binary recurrence sequences"Number Theory, Walter de Gruyter. 409-421 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuhiko Kurano: "On Macaulayfication obtained by a blowing-up"Journal of Algebra. 190. 405-434 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi