• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

MORDELL-WEIL LATTICES OF JACOBIAN VARIETIES

Research Project

Project/Area Number 09640073
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionRIKKYO UNIVERSITY

Principal Investigator

SHIODA Tetsuji  RIKKYO UNIV. COLLEGE OF SCIENCE, PROFESSOR, 理学部, 教授 (00011627)

Co-Investigator(Kenkyū-buntansha) AOKI Noboru  RIKKYO UNIV. COLLEGE OF SCIENCE, ASSIST. PROFESSOR, 理学部, 助教授 (30183130)
Project Period (FY) 1997 – 1999
KeywordsMODELL-WEIL LATTICES / JACOBIAN VARIETIES / SPLITTING FIELDS / UNITS / INTERSECTION THEORY
Research Abstract

I. Mordell-Weil Lattices of Jacobian Varieties.
Basic Theory and Applications
II. Construction of Jacobian Varieties with high Mordell-Weil Rank. We have established the following :
Theorem For any integer g > 0, there exist infinite family of algebraic curves whose Jacobian varieties have Mordell-Weil rank ≧ 4g + 7.
This result greatly improves Neron's assertion (1954) of existence of curves with rank ≧ 3g + 7.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] T.Shioda: "Curves of genus two over Q(t) with high rank"Comment. Math. Univ. St. Pauli. 46. 15-21 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shioda: "Constructing curves with high rank via symmetry"Am. J. Math.. 120. 551-566 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shioda: "Mordell-Weil lattices for higher genus fibration over a curve"in : New Trends in Algebraic Geometry, Cambridge Univ. Press. 359-373 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shioda: "On Q-split Bezout intersection"J.Pure and Applied Algebra. 135. 295-301 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shioda: "The splitting field of Mordell-Weil lattices"Algebraic Geometry : Hirzebrunch 70, Contemporary Mathematics. 241. 297-303 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shioda: "Cyclotomic analogue in the theory of algebraic equations of type E_6, E_7, E_8,"Integral Quadratic Forms and Lattices, Contemporary Mathematics. 249. 87-96 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Shioda: "Curves of genus two over Q (t) with high rank"Comment. Math. Univ. St. Pauli. 46. 15-21 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Shioda: "Constructing curves with high rank via symmetry"Am. J. Math.. 120. 551-566 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Shioda: "Mordell-Weil lattices for higher genus fibration over a curve"New Trends in Algebraic Geometry, Cambridge Univ. Press. 359-373 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Shioda: "On Q-split Bezout intersection"J. Pure and Applied Algebra. 135. 295-301 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Shioda: "The splitting field of Mordell-Weil lattices"Algebraic Geometry : Hirzebrunch 70, Contemporary Mathamatics 241, AMS. 297-303 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Shioda: "Cyclotomic analogue in the theory of algebraic equations of type EィイD26ィエD2, EィイD27ィエD2, EィイD28ィエD2"Integral Quadratic Forms and Lattices, Contemporary Mathmatics 249, AMS. 87-96 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi