• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Research on the arithmetic of algebraic curves and jacobian varieties

Research Project

Project/Area Number 09640075
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionWaseda University

Principal Investigator

HASHIMOTO Kiichiro  Waseda University, School of Science and Engineering, Professor, 理工学部, 教授 (90143370)

Co-Investigator(Kenkyū-buntansha) HASEGAWA Yuji  Waseda Univ. School of Sci. and Eng., (JSPS Fellow), 特別研究員 (30287982)
ADACHI Norio  Waseda Univ. School of Sci. and Eng., Professor, 理工学部, 教授 (60063731)
KOMATSU Keiichi  Waseda Univ. School of Sci. and Eng., Professor, 理工学部, 教授 (80092550)
KAGAWA Takaaki  Waseda Univ. School of Sci. and Eng., Assistant, 理工学部, 助手(平10) (90298175)
OZAKI Manabu  Waseda Univ. School of Sci. and Eng., Assistant, 理工学部, 助手(平9) (80287961)
Project Period (FY) 1997 – 1999
Keywordselliptic curves / modular curves / Taniyama-Simura Conjecture / jacobian variety / modular forms / abelian varieties / algebraic curvers / Q-curves
Research Abstract

In 1994 Wiles and Taylor have settled the proof of Taniyama-Shimura conjecture for (semistable) elliptic curves over Q. This, with its application to the proof of Fermat's Last Theorem, was one of the greatest achievment in this century. In our previous research, we extended the result of Wiles-Taylor proving the modularity of certain abelian varieties over Q, including Q-curves over number fields, and jacobians of QM-curves of GL (2) -type. The aim of the present research has been to provide as many as possible the concrete examples of algebraic curves over Q, for which our modularity criterion for their jacobian can be applied, as well as to investigate various arithmetic properties of such curves. Some of our main results are :
・ We obtained some families of genus 2 curves over Q whose jacobian varieties are of GL (2) -type, and checked their modularity numerically and theoretically.
・ Conversely, for each cusp f (z) of weight 2 whose Fourier coefficients generate a quadratic field K, we tried to find an algebraic curve over QィイD4-ィエD4 shose jacobian variety is isogenous to the Shimura's abelian surface AィイD2fィエD2 attached to f. We have settled this problem in all known cases for K = Q(ィイD8-5ィエD8), Q (ィイD8-1ィエD8). There are 11 such f.
・ We constructed the most general family with 7 free parameters, of genus 2 curves over Q which form a double cuver of a family of elliptic curves. Among them we found a generic family of the covering C (j) → E (j) where E (j) is the Tate's model of elliptic curve with j (E (j) ) = j. Then the simple factor of JacC (j) is shown to be a Q-curve over quadratic field Q (ィイD8j-12ィイD13ィエD1ィエD8).

  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] Ki-ichiro Hashimoto: "Q-curves of degree 5 and jacobian surfaces of GL_2-type"Manuscripta Mathematica. 98. 165-182 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ki-ichiro Hashimoto: "Modularity conjecture for Q-curves and QM-curves"International J. Math.. 10-7. 1011-1036 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ki-ichiro Hashimoto: "On the Sato-Tate Conjecture for QM-curves of Genus Two"Mathematics of Computation. 68-228. 1649-1662 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ki-ichiro Hashimoto: "Inverse Galois Problem for Dihedral Groups"Number Theory and its Applications(Kluwer). 2. 165-181 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ki-ichiro Hashimoto: "Linear relations of theta series attached to Eichler orders of quaternion algebras"Contemporary Mathematics(AMS). 249. 262-302 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yuji Hasegawa: "Hyperelliptic quotients of modular curves Xo(N)"Tokyo Journal of Mathematics. 22. 105-125 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yuji Hasegawa: "Hyperelliptio modular curves Xo^<^*>(N)"ACTA ARITHMETICA. 81. 369-385 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yuji Hasegawa: "Q-curves over quadratic fields"manuscript mathematics. 94. 347-369 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yuji Hasegawa: "Trigonal modular curves"ACTA ARITHMETICA. 81. 129-140 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kiichiro Hashimoto: "Q-curves of degree 5 and jacobian surfaces of GL2-type"Manuscripta Math. 98. 165-182 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kiichiro Hashimoto, Yuji HasegawaFumiyuki Momose: "Modularity conjecture for Q-curves and QM-curves"International J. Math. vol.10-7. 1011-1036 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kiichiro Hashimoto Hiroshi Tsunogi: "On the Sato-Tate Conjecture for QM-curves of Genus Two"Mathematics of Computation. 68 no.228. 1649-1662 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kiichiro Hashimoto Katsuya Miyake: "Inverse Galois Problem for Dihedral Groups"Number Theory and its Applications Kluwer. 165-181 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kiichiro Hashimoto: "Linear relations of theta series attached to Eichler orders of quaternion algebras"Contemporary Math 249 (AMS). 262-302

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yuji Hasegawa: "Hyperelliptic modular curves XOィイD1^★ィエD1(N)"ACTA ARITHMETICA. 81. 369-385 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yuji Hasegawa: "Q-curves over quadratic fields"manuscripta mathematica. 94. 347-364 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yuji Hasegawa Mahoro Shimura: "Trigonal modular curves"ACTA ARITHMETICA. 88. 129-140 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yuji Hasegawa: "Hyperelliptic quotients of modular curves X_O (N)"Tokyo Journal of Mathematics. 22. 105-125 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi