• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Research on Poisson manifolds and related structures on manifolds.

Research Project

Project/Area Number 09640088
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionSaitama University

Principal Investigator

MIZUTANI Tadayoshi  Saitama University, Dept.of Math., Professor, 理学部, 教授 (20080492)

Co-Investigator(Kenkyū-buntansha) FUKUI Toshizumi  Saitama Univ., Dept.of Math., Associate Professor, 理学部, 助教授 (90218892)
SAKURAI Tsutomu  Saitama Univ., Dept.of Math., Associate Professor, 理学部, 助教授 (40187084)
NAGASE Masayoshi  Saitama Univ., Dept.of Math., Professor, 理学部, 教授 (30175509)
SAKAMOTO Kunio  Saitama Univ., Dept.of Math., Professor, 理学部, 教授 (70089829)
OKUMURA Masafumi  Saitama Univ., Dept.of Math., Professor, 理学部, 教授 (60016053)
Project Period (FY) 1997 – 1998
KeywordsPoisson manifold / contact structure / Poisson cohomology / Schouten bracket / generalized divergence / symplectic foliation / leaf invariant / Dirac manifold
Research Abstract

In the second year of the term of the project, we continued to investigate the prop- erties of the plane field which a 2-vector pi defines. A typical example of such plane field is the tangentially symplectic foliation associated with a Poisson structure. In the course of investigation, we obtained the following new insight. (1) In the first year, we showed ; when dim M = 2kappa + 1, if [pi, pi^<kappa>]<double plus> 0, pi defines a contact plane field. This time we have proved the existence of a connection of M such that Divpi (w.r.t. this connection) is a Reel) vector field of the contact structure. (2) If pi defines a (regular) Poisson sturcture, Divpi is a Poisson 1-cocycle and is the image of a modular class (= h_1 in the usual notation of characteristic classes) of the associated folation.
This result suggest the possibility of the definition of characteristic classes of singular foliations in terms of Poisson structures in some cases. As a first attempt in this direction, we picked up the left in variant Poisson structures of Lie groups and tried. to descripe the 3-dimensional leaf invarinat (h_3). In a. different direction of singular objects, we studied Dirac structure on manifoIds. A little more time is needed for us to unite these studies arid obtain adenite results.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] M.Djore and Okumura: "CR submanifolds of maximal CR dimension of complex projective space" Arehiv der Mathematik. 71. 148-158 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Sakamoto: "On the curvature of minimal 2-spheres in spheres" Math. Zeitschrift. 228. 605-627 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nagase: "Spin^q, twistor and Spin^c" Commun. Math. Phys.189. 107-126 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Fukui: "Seeking invariants for blow-analytic equivalence" Compositio Math.105. 95-108 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Fukui, S.Koike, T.C.Kuo: "Blow-analytic equi-singularities, properties, problems and progress" Pitman Research Notes. in Math. Series, Longman. 381. 8-29 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Fukui: "Newton polygons and topology of real zero loci of real polynomials" Journal of London Mathematical Society. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Djorc and M.Okumura: "CR submanifolds of maximal CR dimension of complex projective space" Archiv der Mathematik. 71. 148-158 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Sakamoto: "On the curvature of minimal 2-spheres in spheres" Math.Zeitschrift. 228. 605-627 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Nagase: "Spin^q, twistor and Spin^c" Commun.Math.Phys.189. 107-126 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Fukui: "Seeking invariants for blow-analytic equivalence" Compositio Math.105. 95-108 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Fukui: "S.Koike, T.C.Kuo, Blow-analytic equisingularities, properties, problems and progress" Pitman Research Notes in Math.Series, Longman. 381. 8-29 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Fukui: "Newton polygons and topology of real zero loci of real polynomials" Journal of London Mathematical Society. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Fukui, J.Nuno Ballesteros, M.Saia: "On the number of singularities in generic deformations of mapgerms" Journal of London Mathematical Society. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shinji Egashira: "Qualitative theory and expansion growth of transversely piecewise-smooth foliated S^1-bundles" Ergod.Th.& Dynam.Sys.17. 331-347 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi