• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Uniformization for smooth manifolds

Research Project

Project/Area Number 09640091
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo Institute of Technology

Principal Investigator

FUKAKI Akito  Guraduate School of Science and Engineering Tokyo Institute of Technology ; Professor, 大学院・理工学研究科 (90143247)

Co-Investigator(Kenkyū-buntansha) SHIGA Hiroshige  Guraduate School of Science and Engineering Tokyo Institute of Technology ; Assi, 大学院・理工学研究科, 助教授 (10154189)
MIYAOKA Reiko  Guraduate School of Science and Engineering Tokyo Institute of Technology ; Assi, 大学院・理工学研究科, 助教授 (70108182)
TSUJI Hajime  Guraduate School of Science and Engineering Tokyo Institute of Technology ; Assi, 大学院・理工学研究科, 助教授 (30172000)
FUJITA Takao  Guraduate School of Science and Engineering Tokyo Institute of Technology ; Prof, 大学院・理工学研究科, 教授 (40092324)
MURATA Minoru  Guraduate School of Science and Engineering Tokyo Institute of Technology ; Prof, 大学院・理工学研究科, 教授 (50087079)
Project Period (FY) 1997 – 1998
KeywordsKaehler-Einstein metrics / Stability / Scalar curvature
Research Abstract

1. It is an important unsolved problem to determine when compact Kaehler manifolds with positive first Chern class admit Kaehler-Einstein metric. In the case when the first Chern class is zero or negative one can always find a Kaehler-Einstein metric. In conrast to this, in the case when the first Chern class is positive there are known obstructions due to Y.Matsushima and the Head Investigator. More recently G.Tian extended the Head Invetigator's result to obtain a new invariant which can be applicable to wider class of manifolds. This new invariant is related to the stability in the sense of Mumford. Our research tried to get deeper understanding of this relationship.
2. It is an interesting question to determine which manifolds carry positive scalar curvature metrics, and has been solved by Gromov and Lawson for closed orientable manifolds of dimension greater than four. On the other hand, in the case of dimension four a new differential-topological invariant was introduced using the Seiberg-Witten equations to obstruct the existence of positive scalar curvature metrics. The Head Investigator translated a book written by John Morgan in which rudiments of this theory was explained.
3. Kaehler-Einstein manifolds are special examples of Kaehler manifolds of constant scalar curvature. There is known relationship between stable parabolic bundles over Riemann surfaces and ruled Kaehler sufaces of constant scalar curvature. We also tried to understand this relationship.
4. We obtained a simple proof of the openness of the set of extremal Kaehler casses.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] M.Murata: "Semi small perturbations in the Martin theory for elliptic equations" Israel J.Math. 102. 29-60 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Murata and K.Ishige: "An intrinsic metric approach to uniqueness of the positive Cauchy problem for parabolic equations" Math.Zeit.227. 313-335 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Fujita: "On kodaira energy and adjoint reduction of polarized three folds" Manuscripta Math.94. 211-229 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Fujita: "An appendix to kawachi-Masek's paper on global generation of adjoint bundles on normal surfaces" J.of Alg.Geom.7. 251-252 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Miyaoka: "The splitting and deformations of generalized Gauss map of compact CMC surfaces" Tohoku Math.J.51. 35-53 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Miyaoka: "On the theory of integrable systems and its applications" Proc.of the third International workshop on Differential Geometry, Kyungpook Univ.Korea. 予定.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Shiga: "On the monodromies of holomorphic families of Riemann surfaces and modular transformations" Math.Proc.Cambridge Phil.Soc.122. 541-549 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 二木昭人: "基礎講義 線形代数学" 培風館, 200 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 二木昭人: "サイバーグ・ウィッテン理論とトポロジー" 培風館, J.モーガン著, 145 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Murata: "Semismall perterbations in the Martin theory for elliptic equations" Israel J.Math. 102. 29-60 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Ishige and M.Murata: "An intrinsic metric approach to uniqueness of the positive Cauchy problem for parabolic equations" Math.Z. 227. 313-335 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Fujita: "On Kodaira energy and adjoint reduction of polarized threefolds" Manuscrpta Math. 94. 211-229 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Fujita: "An appendix to Kawachi-Masek's paper on global generation of adjoint bundles on normal surfaces" J.of Alg.Geom. 7. 251-252 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Miyaoka: "The splitting and deformations of generalized Gauss map of compact CMC sufaces" Tohoku Math.J.51. 35-53 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Miyaoka: "On the theory of integrable systems and its applications" Proc.of the Third International workshop on Differential Geometry, Kyungpook Univ.Korea. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Shiga: "On the monodromies of holomorphic families of Riemann surfaces and modular transform" Math.Proc.Cambridge Phil.Soc. 122. 541-549 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi