• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Einstein metric on complex manifolds and the lifted Futaki invariant

Research Project

Project/Area Number 09640094
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo University of fisheries

Principal Investigator

TSUBOI Kenji  Tokyo University of Fisheries, Department of Fisheris, Associate Professor, 水産学部, 助教授 (50180047)

Co-Investigator(Kenkyū-buntansha) KAMIMURA Yutaka  Tokyo University of Fisheries, Department of Fisheris, Associate Professor, 水産学部, 助教授 (50134854)
FUTAKI Akito  Tokyo Institute of Technology, Department of mathematics, Professor, 理学部, 教授 (90143247)
Project Period (FY) 1997 – 2000
KeywordsComplex manifold / Futaki invariant / Einstein metric / Dirac operator / the lifted Futaki invariants / Bando-Calabi-Futaki invariant / Constant scalar curvature Kahler metric / integral invariants
Research Abstract

Let M be a closed complex manifold. Then the Futaki invariant is an obstruction to the existence of the Einstein-Kahler metric on M.In K.Tsuboi, The lifted Futaki invariants and the spinc-Dirac operators, Osaka J.Math., vol. 32 (1995), 207-225, we obtain a formula to calculate the lifted Futaki invariant, which is a generalization of the Futaki invariant. In [1] (of the next page), we generalize this formula and obtain a fixed point formula for almost complex manifolds. In [2], we show that the holonomy of a certain line bundle is an obstruction to the existence of the Einstein-Kahler metric. The constant scalar Kahler metric is a generalization of the Einstein-Kahler metric. In [3], [4], the relation of the Bando-Calabi-Futaki invariant, which is an obstruction to the existence of the constant scalar curvature Kahler metric and is an integral invariant, to other geometric invariants are studied. In order to obtain the result about the integral invariant, we need to know about the integral equation, which are studied in [5], [6].

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] K.Tsuboi: "A fixed point formula for compact almost complex manifolds"J.Math.Kyoto Univ.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Tsuboi: "On the Einstein-Kahler metric and the holonomy of a linebandle"Proc.Edinburgh Math.Soc.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Futaki and Y.Nakagawa: "Characters of antomorphism groups associated with kahler classes and functionals with cocycle condition."Kodai Math.J.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Futaki: "Functionals with cocycle conditions and kahler-Einstein metrics of positive scasar curvature"Promedades on Spheres. (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kamimura: "Corductivity identification in the heat equation by the heat flux"J.Math.Analysis and Applications. 235. 192-216 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Iwasaki and Y.Kamimura: "Convolution calculus for a class of singular Volterra integral equati"J.Integral Equations and Applications. 11. 461-499 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Tsuboi: "A fixed point formula for compact almost complex manifolds"J.Math. Kyoto Univ.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Tsuboi: "On the Einstein-Kahler metric and the holonomy of a line bundle"Proc. Edinburgh Math. Soc.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Futaki and Y.Nakagawa: "Characters of automorphism groups associated with Kahler classes and functionals with cocycle conditions"Kodai Math. J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Futaki: "Functionals with cocycle conditions and Kahler-Einstein metrics of positive scalar curvature"PROMENADES ON SPHERES. (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kamimura: "Conductivity identification in the heat equation by the heat flux"J.Math. Analysis and Applications. vol. 235. 192-216 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Iwasaki and Y.Kamimura: "Convolution calculus for a class of singular Volterra integral equations"J.Integral Equations and Applications. vol. 11. 461-499 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi