• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Researches on vector fields in the large by Riccati equation

Research Project

Project/Area Number 09640097
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNiigata University

Principal Investigator

INNAMI Nobuhiro  Graduate School of Science, Niigata University Prof., 大学院・自然科学研究所, 教授 (20160145)

Co-Investigator(Kenkyū-buntansha) WATABE Tsuyoshi  Faculty of Science, Niigata University Prof., 理学部, 教授 (60018257)
SEKIGAWA Kouei  Faculty of Science, Niigata University Prof., 理学部, 教授 (60018661)
Project Period (FY) 1997 – 1999
KeywordsRiemannian geometry / billiard / theory of parallels
Research Abstract

Many results for Riemannian manifolds as geometry of geodesics have been obtained by using solutions of Jacobi and Riccati equations. In the light of these facts the theory of those equations can be applied to the researches of gradient vector fields, natural Lagrangian systems, differential equations and flows satisfying Huygens' principle, Finsler geometry, billiard ball problems, glued Riemannian manifolds. One of most important problems is to decide when there exists a unique solution of Riccati equation in the large.
The symmetric solutions of the matrix Riccati equation have some nice properties if they are defined on the whole real numbers. The existence and uniqueness problems are important under a lot of situations. In particular, the uniqueness of solutions sometimes comes from the theory of parallels. In this research project we developed the theory of Jacobi and Riccati equations, applied it to the theory of parallels, and, as a result, made the topological and geometrical structures of manifolds clear.
In 1997 we introduced the equation for Jacobi vector fields along geodesics in glued Riemannian manifolds, and we characterized the topological and geometrical structures of warped products by some properties of gradient vector fields. In 1998 and 1999 we have some results for convex billiard ball problems in a plane by applying the theory of parallels in the configuration spaces to Jacobi vector fields along billiard ball trajectories in the Euclidean plane. Mr. Hiroyuki Sakai helped us with our project, in proving some results concerning Laplace operator, eigenvalues of Laplacian on compact glued manifolds

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Nobuhiro INNAMI: "Integral formulas for polyhedral and spherical billiards"J. Math. Soc. Japan. 50. 339-358 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nobuhiro INNAMI: "Volume, surface area and inward injectivity radius"Proc. Amer. Math. Soc,. 127. 3049-3055 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nobuhiro INNAMI: "Gradient vector fields which characterize warped products"Mathematica Scandinavica. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J. T. Cho: "Volume-preserving geodesic symmetries on four-dimensional Hermitian Einstein spaces"Nagoya Math. J.. 146. 13-29 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Ogura: "Four-dimensional almost kahler Einstein and *-Einstein manifolds"Geom. Dedicata. 69. 91-112 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J. T. Cho: "Six-dimensional quasi-kahler manifolds of constant sectional curvature"Tsukuba J. Math.. 22. 611-627 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nobuhiro INNAMI: "Integral formulas for polyhedral and spherical billiards"J. Math. Soc. Japan. 50, 2. 339-357 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nobuhiro INNAMI: "Volume, surface area and inward injectivity radius"Proc. Amer. Math. Soc.. 127, 10. 3049-3055 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nobuhiro INNAMI: "Gradient vector fields which characterize warped products"Mathematica Scandinavica. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J. T. Cho: "Volume-preserving geodesic symmetries on four-dimensional Hermitian Einstein spaces"Nagoya Math. J.. 146. 13-29 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takashi Oguro: "Four-dimensional almost Kahler Einstein and *-Einstein manifolds"Geom. Dedicata. 69, 1. 91-112 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Jong Taek Cho: "Six-dimensional quasi-Kahler manifolds of constant sectional curvature"Tsukuba J. Math.. 22, 3. 611-627 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi