• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Transformation Group Theory and Critical Point Theory

Research Project

Project/Area Number 09640113
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionYamaguchi University

Principal Investigator

KOMIYA Katsuhiro  Yamaguchi Univ., Faculty of Sci., Professor, 理学部, 教授 (00034744)

Co-Investigator(Kenkyū-buntansha) HATAYA Yasushi  Yamaguchi Univ., Faculty of sci., Assistant, 理学部, 助手 (20294621)
SATO Yoshihisa  Yamaguchi Univ., Faculty of Edu., Lecturer, 教育学部, 講師 (90231349)
NAKAUCHI Nobumitsu  Yamaguchi Univ., Faculty of Sci., Associate Professor, 理学部, 助教授 (50180237)
WATANABE Tadashi  Yamaguchi Univ., Faculty of Edu., Professor, 教育学部, 教授 (10107724)
KATO Takao  Yamaguchi Univ., Faculty of Sci., Professor, 理学部, 教授 (10016157)
Project Period (FY) 1997 – 1998
KeywordsBorsuk-Ulam theorem / equivariant K-theory / representation ring / Euler class / equivariant maps / mapping degree
Research Abstract

The Borsuk-Ulam theorem is useful and attractive in the study of Topology, Global Analysis and other areas in Mathematics. The theorem has a long history since it was published in 1933. For more than 60 years many researchers has been contributing to various kind of applications and generalizations of the theorem.
The classical Borsuk-Ulam theorem is concerned with equivariant maps between spheres with the antipodal action of the cyclic group of order 2. In our study we generalize this to equivariant maps between unit spheres SU and SW of unitary representations U and W of a more general compact Lie group G.
In 1997 we mainly concerned with the case in which G is a torus. Observing the algebraic structure of the equivariant K-ring of a representation sphere, we obtained a natural generalization of the classical Borsuk-Ulam theorem. Moreover, under some conditions on representations we showed U must be a subrepresentation of W if there exists an equivariant maps ftom SU to SW.
In 1998 we obtained results on the degrees of equivariant maps between representation spheres of a compact Lie group C.The method heavily depends on algebraic observation of the Euler class of representation which is defined in the representation ring R(G) of G.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] Takao Kato: "Variety of special linear systems on k-sheeted coverings" Geom.Dedicata. 69. 53-65 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nobumitsu Nakauchi: "A Liouville type theorem for p-harmonic maps" Osaka J.of Math.35. 303-312 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshihisa Sato: "3-dimensional homology handles and minimal second Betti numbers of 4-manifolds" Osaka J.of Math.35. 509-527 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Katsuhiro Komiya: "Equivariant maps between representation sphreres of a torus" Publ.RIMS, Kyoto Univ.34. 271-276 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Katsuhiro Komiya: "Equivariant maps between representation spheres of a torus" Publ.RIMS,Kyoto Univ.34. 271-276 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takao Kato: "Variety of special linear systems on k-sheeted coverings" Geom.Dedicata. 69. 53-65 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nobumitsu Nakauchi: "A Liuville type theorem for p-harmonic maps" Osaka J.of Math.35. 303-312 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihisa Sato: "3-dimensional homology handles and minimal second Betti numbers of 4-manifolds" Osaka J.of Math.35. 509-527 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi