1997 Fiscal Year Annual Research Report
Project/Area Number |
09640139
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Research Institution | Fukuoka Institute of Technology |
Principal Investigator |
糸川 銚 福岡工業大学, 情報工学部, 助教授 (90223205)
|
Co-Investigator(Kenkyū-buntansha) |
西畑 伸也 福岡工業大学, 工学部, 助教授 (80279299)
西原 賢 福岡工業大学, 情報工学部, 教授
|
Keywords | リーマン多様体 / 極小部分多様体 / ホモロジー / 複素局所凸空間 / 正則写像 / カップされた偏微分方程式系 / 漸近的性質 / 統計多様体 |
Research Abstract |
研究代表者,糸川 銚はLeslie Coghlan氏と共著の論文 An injectivity radius estimate and stability of minimal submanifoldsをKyushu Journal of Mathematicsより発表した.また,塩浜勝博氏と共著の別な論文 The unboundedness of certain minimal submanifolds of positively curved riemannian spacesを現在投稿中である.更に,小林亮一氏と共著の論文 Minimizing currents in open manifolds and n - 1 homology of non-negatively Ricci curved manifoldsには一部修正を加え,現在新版を執筆中である.研究代表者は現在統計多様体における±1接続の測地線の変分的特徴付けにつき考察を続け,一部理解を深めはしたが,まとまった結果には至っていない. 研究分担者,西原 賢は,複素局所凸空間Eから複素局所凸空間 F の正則写像fが有界集合上弱連続なとき,それはEのbidual空間E"に同程度連続集合上汎弱連続に拡張できるかという研究を続け,自身の結果を改良した論文Extension of polynomial mappings of weak type and its applicationsを投稿中である.現在もこの研究を続け,Eの擬凸近傍の構造を研究中である. 研究分担者,西畑 伸也は双曲型と楕円型のカップルした偏微分方程式系の解の存在一意性ならびに解の漸近的性質を調べ,初期条件が適当なソボレフ空間において十分小さいとき,解の一意存在性,平衡状態への収束とその速度,ならびに放物的粘性保存則による近似が得られた.現在2編の論文を執筆中である.
|
Research Products
(1 results)