• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Study of smooth non-compact Lie group actions on compact smooth manifolds

Research Project

Project/Area Number 09640140
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo Metropolitan College of Aeronautical Engineering

Principal Investigator

MUKOYAMA Kazuo  Tokyo Metro.College.of A.E., General Edu., Prof., 一般科, 教授 (60219847)

Co-Investigator(Kenkyū-buntansha) KADOWAKI Mituteru  Tokyo Metro.C.of A.E., General Edu., Lecturer, 一般科, 講師 (70300548)
ONO Tomoaki  Tokyo Metro.College.of A.E., General Edu., Assis.Prof., 一般科, 助教授 (00224270)
SUGIE Michio  Tokyo Metro.College.of A.E., General Edu., Prof., 一般科, 教授 (90216309)
MIYAUCHI Mutsuo  Tokyo Metro.College.of A.E., General Edu., Prof., 一般科, 教授 (00219726)
TOYONARI Toshitaka  Tokyo Metro.College.of A.E., General Edu., Prof., 一般科, 教授 (20217582)
Project Period (FY) 1997 – 1998
Keywordssmooth action / non-compact Lie group / orbit space
Research Abstract

It is important to study non-compact Lie group actions on compact smooth manifolds.
In this note, we classify smooth SU(p, 1)-actions on the (2p+2q-1)-sphere and on the complex projective (p+q-1)-space whose restriction to the maximal compact subgroup S(U (p) X U (q)) is standard.
The results are as follows.
Let U, V be the set of smooth SU(p, q)-actions on P_<p+q-1> (C), S^<2p+2q-1> whose restricted S(U(p) X U(q))-action is standard, respectively.
1. There is a one-to-one correspondence between U and the set of pairs (phi', f' ), where phi' is a smooth N'(p, q)=SU(1,1)-action on P_1(C) whose restriction on S(U (p) X U (q))*N'(p, q) is standard and f : P_1(C)*P_1(C) is a smooth N'(p, q)-equivariant map satisfying one condition.
From this fact we see that there exist infinitely many smooth actions on P_<p+q-1>(C) which are mutually distinct.
2. There is a one-to-one correspondence between V and the set of pairs (phi, f) , where phi is a smooth N(p, q)=U(1, 1)-action on S^3 whose restriction on S(U(p) X U(q)) *N(p, q) is standard and f : S^3*P_1(C) is a smooth N(p, q)-equivariant map satisfying one condition.
3. There exists a mapping rho : V*U which is onto but not one-to-one.

  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] M.Kadowaki: "Low energy resolvent estimates for acoustic propagator in perturbed stratified media." J.Ditt.Equations. 141. 25-53 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Igarashi: "On the minimal length of segments composed of some fixed points and moving points(2)." Bull.Politec.Univ.28-A. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kadowaki: "High energy resolvent estimates for acoustic propagator in a stratified media." 京都大学数理研講究録. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kadowaki: "Low energy resolvent estimates for acoustic propagator in perturbed stratified media" J.Diff.Equations. 141. 25-53 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Igarashi, T.Toyonari, M.Sugie, K.Mukoyama: "On the minimal length of segments composed of some fixed points and moving points (2)" Bull.Politec.Univ.28-A. 149-152 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kadowaki: "High energy reslvent estimates for acoustic propagator in a stratified media." RIMS. (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi