• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Research on partial differential equations and selfadjoint operators of mathematical physics

Research Project

Project/Area Number 09640158
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionThe University of Tokyo

Principal Investigator

YAJIMA Kenji  Graduate school of Mathematical Sciences, University of Tokyo, Full professor, 大学院・数理科学研究科, 教授 (80011758)

Co-Investigator(Kenkyū-buntansha) TSUTSUMI Yoshio  Graduate school of Mathematical Sciences, University of Tokyo, Associate profess, 大学院・数理科学研究科, 助教授 (10180027)
NAKAMURA Shu  Graduate school of Mathematical Sciences, University of Tokyo, Full professor, 大学院・数理科学研究科, 教授 (50183520)
TAMURA Hideo  Department of Mathematics Okayama University, Full professor, 理学部, 教授 (30022734)
Project Period (FY) 1997 – 1998
KeywordsSchrodinger equation / Schrodinger operators / spectral theory / scattering theory / Fundamental solution / Pauli operator / semiclassical limit / Non-linear wave equation
Research Abstract

joint operators appearing in mathemmatical physics was carried out. Major attention was focused on the topics of linear and non-linears Schrodinger equations, non-linear wave equations and the spectral and scattering theory for Schrodinger operators and Pauli-operators. These problems were investigated by employing methods mainly from functional analysis, real-variable theory, Fourier analysis and micro-local analysis. As a result, the following new results were found :
1. The fundamental solution of time dependent Schrodinger equations is smooth and bounded for t * 0 if the potential subquadratic, whereas it is nowhere C^1 if the potential superquadratically increasing at infinity. The fundamental solution of pertubations of harmonic oscillator enjoy the recurrence of singularities if the perturbation are sublinear whereas it in general disappears if the perturbations are superlinear.
2. The fundamental solution remains continuous and bouned for a class of singular potentials including Coulomb potentials.
3. The asymptotic behavior of the number of eiegnvalues accumulating to zero of two dimensional Pauli operators with non-homogeneous magnetic fields has been established.
4. The low enegry limits of the scattering opertors for two dimensional Schrodinger opeartors with magnetic fields has been found. The asymptotic behavior of the scattering matrix when the magnetic field converges to so called magnetic string has been clarified.
5. The effect of the magnetic fields to the tunneling in semi-classical limit has been measured and it is found that it largely depends on the smoothness of the magnetic fields.
6. Semi-classical behavior of the spectral shift function for Schrodinger operators at the trapping energy has been clarified.
7. Strichartz type estimate is established for a system of non-linear wave equation with different propagation speeds and its relation to the well-posedness of critical non-linear wave equation has been clarified.

  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] Kenji Yajima: "Onfundamental solution of time dependent Schrodinger equations" Contemporary Mathematics. 217. 49-68 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hideo Tamura: "Error estimate in operator norm of exponential product formula for propagators of parabolic equations" Osaka Mathematical Journal. 35. 751-770 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hideo Tamura: "Asymptotic distribution of cigenvalues for Pauli operators with nonconstant magnetic fields" Duke Mathematical Journal. 93. 535-574 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hideo Tamura: "Asymptotic distribution of onegative eigen-values for two-dimensional Pauli operators with non-constant magnetic fields" Ann Inst.Fourier(Grenoble). 48. 479-515 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shu Nakamura: "Agmon-type exponential decay estimates for pseudo-different operator" Journal of Mathematical Sciences,Univ.Tokyo. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ira Herbst: "Schrodinger operators 〓 strong magnetic fields:Quasi-periodicity of spectral orbits and topology" AMS.M.Sh.Birmah教授70歳記念号. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kenji Yajima: "Boundedness and continuity of the fundamental solution of the time dependent Schrodinger equation with singular potentials" Tohoku Mathematical Joural. 50. 577-595 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shu Nakamura: "Tunneling estimates for magnetic Schrodinger operators" Communications in Mathematical Physics. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shu Nakamura: "Spectral shift function for trapping energies in the semi-classical limit" Communications in Mathematical Physes. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tohru Ozawa: "Space-time estimates for null-gauge forms and non-linear Schrodinger equations" Differential and Integral Equations. 11. 279-292 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中村周(岡本久): "関数解析1.2(岩波講座・現代数学・基礎)" 岩波書店, 266 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yajima, Kenji: "On fundamental solution of time dependent Schrodinger equations" Contemporary mathematics. 217. 49-68 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yajima, Kenji: "Boundedness and conitinuity of the fundamenatal solution of time dependent Schrodinger equation with singular potentials" Tohoku Math.J.50. 557-595 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tamura, Hideo (with Ichinose, Takashi): "Error estimate in operator norm of exponential product formula for propagators of parabolic equations" Osaka Math.J.35. 751-770 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tamura, Hideo (with Iwatsuka, Akira): "Asymptotic distribution of eigenvalues for Pauli operators with non-constant magnetic fields" Duke Math.J.93. 535-574 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tamura, Hideo (with Iwatsuka, Akira): "Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with non-constant magnetic fields" Ann.Inst.Fourier. 48. 479-515 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nakamura, Shu: "Agmon-type exponential decay estimate for psuedo-differential operators" J.Math.Sci.Univ.Tokyo. 5. 693-721 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nakamura, Shu (with Herbst, Ira): "Schrodinger operators with strong magnetic fields : Quasi-periodicity of spectral orbits" Differential operators and Spectral Theory (AMS). (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nakamura, Shu: "Tunneling estimates for magnetic Schrodinger operators" Commun.Math.Phys.200. 25-34 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nakamura, Shu: "Spectral shift function for trapping energy in the semi-classical limit" Commun.Math.Phys.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tsutsumi Yoshio (with Ozawa, Tohru): "Space time estimate for null-gauge forms and non-linear Schrodinger equations" Differential and Integral equations. 11. 279-292 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nakamura, Shu (with Okamoto Hisashi): Functional Analysis. Iwanami-shoten, (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi