• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Study of metric properties of Teichmuller spaces

Research Project

Project/Area Number 09640176
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionNagoya University

Principal Investigator

NAKANISHI Toshihiro  Graduate School of Mathematics, Nagoya University Associate Professor, 大学院・多元数理科学研究科, 助教授 (00172354)

Co-Investigator(Kenkyū-buntansha) YOKOYAMA Misako  Faculty of Science Shizuoka University, Assistant, 理学部, 助手 (80240224)
SATO Hiroki  Faculty of Science Shizuoka University, Professor, 理学部, 教授 (40022222)
IZEKI Hiroyasu  Graduate School of Science Tohoku University, Associate Professor, 大学院・理学研究科, 助教授 (90244409)
TANIGAWA Harumi  Graduate School of Mathematics Assistant, 大学院・多元数理科学研究科, 助手 (30236690)
YOSHIKAWA Ken-ichi  Graduate School of Mathematics Assistant, 大学院・多元数理科学研究科, 助手 (20242810)
Project Period (FY) 1997 – 1998
KeywordsTeichmuller Space / Riemann Surface / Hyperbolic Geometry / Kleinian Groups
Research Abstract

We have studied metric properties of Teichmuller space of 2 dimensional hyperbolic orbifolds and related subjects on discontinuous groups and 2 and 3 dimensional orbifolds. We obtained the following results :
1. Description of Teichmuller space of hyperbolic cone surfaces as a real algebraic space by using the distances between cone points and horocycles and its applications to the problem of finding the minimal number of geodesic length functions needed for a global parametrization of a Teichmuller space, the representation of mapping class groups and holomorphic families of Riemann surfaces.
2. Geodesic length functions related to suitably chosen closed curves on the underlying surface of a cone surface supply a global coordinate-system on the Teichmuller space. We expressed the 2 form which is defined analogously to Wolpert's formula of Weil-Petersson 2-form in terms of these geodesic length functions and calculated the volumes of some moduli spaces.
3. Classification of all non-cocompact arithmetic. Fuchsian groups of signature (0 ; theta_1, theta_2, theta_3, theta_4).

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] M.Naatanen and T.Nakanishi: "Weil-Petersson areas of the moduli space of tori" Results in Mathematics. 33. 120-133 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Izeki: "The Teichmuller distance on the space of flat conformal structures" Conform.Geom.Dynam.2. 1-24 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Sato: "Jorgensen's inequality for classical Schottky groups of real type" J.Math.Soc.Japan. 50. 945-968 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Tanigawa: "Grafting,harmonic maps,and projective structures on surfaces" J.Differential Geom.47. 399-419 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Yokoyama: "Computing the Topological Degree with Noisy Information" J.Complexity. 13. 272-278 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Yoshikawa: "Degeneration of algebraic manifolds and the spectrum of Laplacian" Nagoya Math.J.146. 83-129 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Naatanen, Marjatta and Toshihiro Nakanishi: "Weil-Petersson areas of the moduli space of tori" Results in Mathematics. 33. 120-133 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Izeki, Hiroyasu: "The Teichmuller distance on the space of flat conformal structures" Conform.Geom.Dynam.2. 1-24 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Sato, Hiroki: "Jorgensen's inequality for classical Schottky groups of real type" J.Math.Soc.Japan. 50. 945-968 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tanigawa, Harumi: "Grafting, harmonic maps, and projective structures on surfaces" J.Differential Geom.47. 399-419 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yokoyama, misako: "Computing the Topological Degree with Noisy Information" J.Complexity. 13. 272-278 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshikawa, Ken-ichi: "Degeneration of algebraic manifolds and the spectrum of Laplacian" Nagoya Math.J.146. 83-129 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi