• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

On symmetric and radial viscosity solutions for elliptic partial differential equation.

Research Project

Project/Area Number 09640187
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionKobe University of Mercantile Marine

Principal Investigator

MARUO Kenji  Kobe Univ.Mercan.Marine., Faculty of Mercan.Marine, Professor, 商船学部, 教授 (90028225)

Co-Investigator(Kenkyū-buntansha) INOUE Tetuo  Kobe Univ.Mercan.Marine, Faculty of Mercan.Marine, Professor, 商船学部, 教授 (50031448)
ISHII Katsuyuki  Kobe Univ.Mercan.Marine, Faculty of Mercan.Marine, Assistant Professor, 商船学部, 助教授 (40232227)
Project Period (FY) 1997 – 2000
KeywordsViscosity Solution / Degenerate Elliptic Equation / Existence Theorem / Uniqueness Theorem / Semilinear / Quasilinear / Radial Solution
Research Abstract

We consider the Dirichelet problem for a semilinear degenerte elliptic equation (DP) : -g(|x|)Δu+f(|x|, u(x))=0, and Boundary Condition where N【greater than or equal】2 and g (|x|), f(|x|, u) are continuous and the domain is a bounded ball in N-dimensional space. We discuss the problem (DP) under the following assumptions : 1)g is nonnegative. 2) f is strictly monotone for u. We frist define a standard viscosity solution by the viscosity solution such that f (|x|, u(x))=0 if g(|x|)=0. Then we can prove that the any continuous standard viscosity solution is the radial solution and unique. We add an assumption : 3)∫^<a-0>g^<-1> (s) ds=∞ or ∫_<a+0> g^<-1> (s) ds=∞ for any a : g (a)=0. Then We obtain that any continuous viscosity solution is the radial solution and uniqne. If the assumption 3) is not satisfied there exist examples such that the continuous viscosity solutions are not uniqne.
We next state the existence and uniqueness of the continuous unbounded viscosity solution in R^N. We u … More se the order of the infinite neiborhood of the solution as the boundary condition. We know that the existence or nonexistece of the solution are dependent on a kind of the order of the solution. Moreover, we get the results which the uniqueness or non-uniqueness are also dependent on a kind of the order of the solution. In this case, we assume that g, f is sufficiently smooth.
We now show the existence and uniquness of the continuous viscosity solution to quasi-semilinear degenrate elliptic problem. Here, g (|x|, u), f (|x|, u) are continuous and f is strictly monotone for u. Moreover, we assume there exists an implicite function of f=0 and the implicite function holds some smootheness. Then we can prove the existence of the continuous viscosity solution. We next state the uniquenss of the continuous viscosity solution. Assume that g (|x|, u) and f (|x|, u) hold the some relations such that f (|x|, u)/g (|x|, u) is monotone for u. Then we have the uniquness theorem and get the result this viscosity solution is the radial solution. Less

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] K.Maruo and T.Tomita: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations,"Proc.Seventh.Tokyo Conference On Nonlinear PDE1998,. 16-21 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Maruo and T.Tomita: "Structure of unbounded viscosity solutions to semilinear degenerate elliptic equations."RIMS.Kokyuroku. 1105. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Maruo and T.Tomita: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Eliptic Equations II"Proc.ninth.Tokyo Conference On Nonlinear PDE2000,.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Maruo and T.Tomite: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations"O.J.M.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] with Y.Tomita: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations"Proc.Seventh.Tokyo Conference On Nonlinear PDE1998. 16-2. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] with Y.Tomita: "Structure of unbounded viscosity solutions to semilinear degenerate elliptic equations"RIMS Kokyuroku. No.1105. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] with Y.Tomita: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations II"Proc ninth Tokyo Conference On Nonlinear PDE2000. (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations"O.J.M.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi