• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

THEORY OF IDEAL BOUNDARIES OF AN INFINITE NETWORK AND ITS APPLICATION

Research Project

Project/Area Number 09640188
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionSHIMANE UNIVERSITY

Principal Investigator

YAMASAKI M.  Shimane Univ.Mathematics Professor, 総合理工学部, 教授 (70032935)

Co-Investigator(Kenkyū-buntansha) SUGIE J.  Shimane Univ.Mathematics Professor, 総合理工学部, 教授 (40196720)
FURUMOCHI T.  Shimane Univ.Mathematics Professor, 総合理工学部, 教授 (40039128)
AIKAWA H.  Shimane Univ.Mathematics Professor, 総合理工学部, 教授 (20137889)
Project Period (FY) 1997 – 1998
KeywordsInfinite networks / discrete Kuramochi function / discrete Kuramochi boundary / discrete Laplacian / Hardy's inequality / 固有値問題 / Hardyの不等式 / ヒルベルトネットワーク
Research Abstract

(1) Solutions of partial difference equations on an infinite network show some interesting behavior at the point at infinity of the network. The aim of this project is to characterize the point at infinity with the aid of potential theoretic tools and to study its effects for the study of the partial difference equations. We succeeded to construct a theory of discrete Kuramochi boundary comparable to the theory of discrete Martin boundary for random walks. Our theory is a discrete analogue to the theory of Kuramoch compactification of Riemann surfaces due to Kuramochi and Ohtsuka. After introducing a discrete Kuramochi function of a network, we define the Kuramochi compactification as the space on which the Kuramochi function can be extended continuously. We obtain results concerning a classification of Kuramochi boundary points and the behavior of Kuramochi potentials and SHS functions
(2) As an application of our study, we give a kind of Hardy's inequality on finite networks. With some numerical experiments, we show that our estimation of the wighted minimum eigenvalue problem for the discrete Laplacian is more effective than the usual theory when the size of the net-work becomes large.

  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] 村上温, 山崎稀嗣: "An introduction of Kuramochi boundary of an infinite network" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 30. 57-89 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 村上温, 山崎稀嗣: "無限ネットワークの非線形倉持境界" RIMS Kokyuroku. 1016. 85-93 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Oettli, W., 山崎稀嗣: "Duality theorems on an infinite network" RIMS Kokyuroku. 981. 170-179 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 山崎稀嗣: "Extremum problems on a Hilbert network" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 31. 57-71 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 生源寺亨浩, 山崎稀嗣: "Hardy's inequality on finite networks" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 32(to appear). (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 村上温, 山崎稀嗣: "Discrete Kuramochi function" Proc.3rd.Intern.Conference on Difference Equation and Applications. (to Appear). (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Murakami and M.Yamasaki: "An introduction of Kuramochi boundary of an infinite network" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 30. 57-89 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] W.Oettli and M.Yamasaki: "Duality theorems on an infinite network" RIMS Kokyuroku. 981. 170-179 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Yamasaki: "Extremum problems on a Hilbert network" Mem.Fac.Sci.Simane Univ.Ser.B : Mathematical Science. 31. 57-71 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Shogenji and M.Yamasaki: "Hardy's inequality on finite networks" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 32 (to appear). (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Murakami and M.Yamasaki: "Discrete Kuramochi function" Proc.3rd.Intern.Conference on Difference Equation and Applications. (to appear.). (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi