• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

The Equations for the Motion of Viscous Incompressible Fluids

Research Project

Project/Area Number 09640202
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionKyushu University

Principal Investigator

KATO Hisako  Graduate School of Mathematics, Kyushu University, 大学院・数理学研究科, 教授 (00038457)

Co-Investigator(Kenkyū-buntansha) HYAKUTAKE Hiroto  Graduate School of Mathematics, Kyushu University, Associate Professor, 大学院・数理学研究科, 助教授 (70181120)
ISHIKAWA Nobuhiro  Graduate School of Mathematics, Kyushu University, Professor, 大学院・数理学研究科, 教授 (10037806)
NAKAO Mitsuhiro  Graduate School of Mathematics, Kyushu University, Professor, 大学院・数理学研究科, 教授 (10037278)
Project Period (FY) 1997 – 1998
Keywordsmotion of fluids / unique salution / global solution / nonlinear / viscosity / incompressible fluids / velocity gradient / non-Newtonian
Research Abstract

Head investigator Kato has studied the equations for the motion of viscous incompressible fluids.
1. For the periodicity problem, she proved the existence of periodic solu- tions for the Navier-Stokes equations under critical smallness assumption on the data (Ref. Kato [13).
2. For the initial boundary value problem, she has found modified Navier- Stokes equations, and has proved the existence of global (in time ) strong solutions which satisfy the Navier-Stokes equations in time intervals when the velocity gradient is below a given constant, and satisfy the equations 'called non-Newtonian' in time intervals when the velocity gradient is above the constant (Ref. Kato [2], [3]). Furthermore, she has shown that the solu- tions of the modified Navier-Stokes quations converge to the solutions of the stationary equations as t * *(Ref. Kato [4]).
Investigator Nakao has studied mainly on decay and global existence prob- lems for nonlinear wave equations. Concerning the latter he has derived re- sults which depend on precise decay estimates for energy. He has also derived an interesting result on the decay of local energy for the exterior problem. (Ref. Nakao [1]-[6]).
Investigator Hyakutake gives confidence regions of the multinormal mean by two-stage procedures and its asymptotic properties (Ref. Hyakutake [1], [2]).

  • Research Products

    (25 results)

All Other

All Publications (25 results)

  • [Publications] Hisako Kato: "Existence of periodic solutions of the Navier-Stokes equations" J. Math. Anal. Appl.208-1. 141-157 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hisako Kato: "On the initial boundary value problem for the Navier-Stokes equations" Preprint, Kyushu Univ.11. 1-11 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hisako Kato: "Initial boundary value problem for the viscous incompressible flows." Proceedings of the First Congress ISAAC'97, University of Delaware, U.S.A. Kluwer Publisher. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hisako Kato: "The Navier-Stokes flow accompanied by a non-Newtonian flow" Proceedings of the Sixth International Colloquium on finite or infinite dimensional complex analysis, Andong, Korea.1. 87-92 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mitsuhiro Nakao: "On the decay of solutions of the wave equation with a local time-dependent nonlinear dissipation" Adv. Math. Sci. Appl.7. 317-331 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mitsuhiro Nakao: "Decay of solutions to the Cauchy problem of the Klein-Gordon equation with a nonlinear localized dissipation" Hokkaido Math. J.27-2. 245-271 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ryo Ikehata: "Global solutions to the initial-boundary value problem for the quasilinear visco-elastic wave equation with a perturbation." Funk. Ekvac.40-2. 293-312 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mitsuhiro Nakao: "Local energy decay for the wave equation in an exterior domainwith a localized dissipation" J. Differential Equations. 148. 388-406 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mitsuhiro Nakao: "Global existence of smooth solutions to the initial-boundary value prob-lem for the quasi-linear wave equation with a local degenerate dissipation" Nonlinear Analysis,T.M.A.(to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mitsuhiro Nakao: "A sharper decay estimate for the quasilineatr wave equation with viscos-ity intwo space dimensions" Differential and Integral Equations. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshikazu Takeda: "Fixed-size confidence region by multivariate two-stage procedure when the covariance matrix has a structure" J. Japan Statist. Soc.27-1. 37-44 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroyuki Nakao: "Approximated confidence regions in multivariate linear calibration" Commn. Statist. -Simula.26. 829-839 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 加藤 久子: "微分積分学" サイエンス社, 220 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hisako Kato: "Existence of periodic solutions of the Navier-Stokes equations" J.Math.Anal.Appl.208. 141-157 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hisako Kato: "On the initial boundary value problem for the Navier-Stokes equations" Preprint, Kyushu Univ.11. 1-11 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hisako Kato: "The Navier-Stokes flow accompanied by a non-Newtonian flow" Proceed-ings of the Sixth International Colloquium on finite or infinite dimensional complex analysis, Andong, Korea. 1. 87-92 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mitsuhiro Nakao: "On the decay of solutions of the wave equation with a local time-dependent nonlinear dissipation" Adv.Math.Sci.Appl.7. 317-331 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mitsuhiro Nakao: "Global solutions to the initial-boundary value problem for the quasilinear visco-elastic wave equation with a perturbation (with R.Ikehata and T.Matsuyama)" Funk.Ekvac.40. 293-312 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mitsuhiro Nakao: "Decay of solutions to the Cauchy problem of the Klein-Gordon equation with a nonlinear localized dissipation" Hokkaido Math.J.27. 245-271 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mitsuhiro Nakao: "Local energy decay for the wave equation in an exterior domainwith a localized dissipation" J.Differential Equations. 148. 388-406 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mitsuhiro Nakao: "Global existence of smooth solutions to the initial-boundary value prob-lem for the quasi-linear wave equation with a local degenerate dissipation" Nonlinear Analysis, T.M.A.(to appear). (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mitsuhiro Nakao: "A sharper decay estimate for the quasilineatr wave equation with viscos-ity intwo space dimensions" Differential and Integral Equations. (to appear). (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroto Hyakutake: "Fixed-size confidence region by multivariate two-stage procedure when the covariance matrix has a structure (with Y.Takada)" J.Japan Statist.Soc.27. 37-44 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroto Hyakutake: "Approximated confidence regions in multivariate linear calibration. Commn. (with H.Nakao)" Statist.-Simula.26. 829-839 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hisako Kato: Initial boundary value problem for the viscous incompressible flows, Pro-ceedings of the First Congress ISAAC'97. University of Delaware, U.S.A., Kluwer Publisher, to appear.,

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi