• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Study of singular solutions of nonlinear differential equations

Research Project

Project/Area Number 09640209
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionTOKYO METROPOLITAN UNIVERSITY

Principal Investigator

TAKAKUWA Shoichiro  Tokyo Metropolitan University, Graduate School of Science, Assosiate Professor, 大学院・理学研究科, 助教授 (10183435)

Co-Investigator(Kenkyū-buntansha) TODA Masahito  Granduate School of Science TOKYO METROPOLITAN UNIVERSITY,Assosiate Professor, 大学院・理学研究科, 助手 (80291566)
NISHIOKA Kunio  Granduate School of Science TOKYO METROPOLITAN UNIVERSITY,Assosiate Professor, 大学院・理学研究科, 助教授 (60101078)
HIDANO Kunio  Granduate School of Science TOKYO METROPOLITAN UNIVERSITY,Assosiate Professor, 大学院・理学研究科, 助手 (00285090)
OHNITA Yoshihiro  Granduate School of Science TOKYO METROPOLITAN UNIVERSITY,Professor, 大学院・理学研究科, 教授 (90183764)
KURATA Kazuhiro  Granduate School of Science TOKYO METROPOLITAN UNIVERSITY,Assosiate Professor, 大学院・理学研究科, 助教授 (10186489)
Project Period (FY) 1997 – 1998
Keywordsdifferntial equation / singular point of solution / harmonic map / gauge theory / nonlinear problem / convergence theorem
Research Abstract

We first study harmonic maps between two Riemannin manifolds. We consider the case that the dimension n of the domain manifold is greater than 2. We prove that any subset of harmonic maps whose gradients are uniformly bounded in L^n space is compact with respect to C^* topology. As a corollary of this result we obtain the uniform estimates of first derivatives of harmonic maps in higher dimensions. This result is published in "Differential and Integral Equations". We show that the Liouville type for harmonic maps holds in higher dimensions, which is an important ingredient of the proof of the compactness theorem. By applying Liouville type theorem we obtain the estimate of the gradients of singular harmonic maps using the distance from the set of singular points. The paper of this result in in preparation and the reserch of singular harmonic maps is in progress.
Next we study the nonlinear problems in gauge theory. Using Grant-in-Aid for Scientific Reserch we invite Professor Kazuo Akutagawa (Shizuoka Univ.) to give a lecture on Seiberg-Witten theory and its application to geometry. We study the moduli space of Yang-Mills connections on a Riemannian manifold of dimension n <greater than or equal> 5 and prove the compactness of subsets of the moduli space whose curvatures are uniformly bounded in L^n space. The paper of this result is to submitted and the reserch of singular Yang-Mills connections is in progres

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] S.Takakuwa: "A compactness theorem for harmonic maps." Differential and Integral Equations. 11・1. 169-178 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kurata: "A unique continuation theorem for Schrodinger equation with singular magnetic fields" Proceeding Amer.Math.Soc.125・3. 853-860 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kurata: "Local boundedness and continuity for weak solutions of -(▽-ib)^2u+Vu=0" Math.Zeitshrift. 224・4. 641-635 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Hidano: "Nonlinear small data scattering for the wave equation in R^<4+1>" J.Math.Soc.Japan. 50・2. 641-635 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Nishioka: "The first hitting time and place of a hlf-line by a biharmonic pseudo process" Japanese J.Math.11・1. 641-635 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Takakuwa: "A compactness theorem for harmonic maps" Differential and Integral Equation. 11, 1. 169-178 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kurata: "A unique continuation theorem for Schrodinger equations with singular magnetic fields" Proc.A.M.S.125, 3. 853-860 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kurata: "Local boundedness and continuity for weak solutions of -(*-ib)^2u+Vu=0" Math.Z.224, 4. 641-653 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Hidano: "Nonlinear small data scattering for the wave equation in R^<4+1>" J.Math.Soc.Japan. 50, 2. 253-292 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Nishioka: "The first hitting time and place of a half-line by a biharmonic pseudo process" Japanese J.Math.23, 2. 235-280 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi