• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Analysis and Application of Integrable Cellular Automaton

Research Project

Project/Area Number 09640245
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionThe University of Tokyo

Principal Investigator

TOKIHIRO Tetsuji  Graduate School of Mathematical Sciences, The University of Tokyo, Professor, 大学院・数理科学研究科, 教授 (10163966)

Project Period (FY) 1997 – 1999
Keywordscellular automaton / integrable system / soliton / nonautonomous KP equation / box-ball system
Research Abstract

The main results obtained in the term are as follows :
(1) We showed that almost all integrable Cellular Automata (CAs) are obtained by ultradiscretization of the nonautonomous discrete KP equation and its reductions.
(2) We constructed discrete integrable lattices (quadrilateral lattices) using the τ functions of multi-component discrete KP equations.
(3) We showed that discrete Toda molecule equation is equivalent to the ε algorithm for convergence acceleration methods, and discussed analytically about the convergence of the methods in terms of the discrete Toda molecule equation.
(4) A box-ball system, a discrete dynamical system in which solitonic time evolution patterns of CAs are expressed as movement of balls in an infinite array of boxes, shows some combinatorial natures in the scattering of solitonic patterns. For generalized box-ball systems, we proved that they are obtained by ultra-discretization from 1-reduction of the discrete KP equation (Hirota-Miwa equation) and obtained concrete form of soliton solutions. We proved the solitonic natures and the combinatorial properties with ultradiscretization of the generalized Toda molecule equation. We also constructed the conserved quantities of the system and gave another proof for the solitonic nature. Furthermore we applied the correspondence between box-ball system and quantum integrable lattices of A type to the proof of solitonic natures. Then we constructed the most general box-ball system in which the capacity of boxes, carriers, and spedies of boxes are completely arbitrary, and gave the proof of solitonic natures of the system and constructed explicit solutions to the elementary excitations of the system.

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] A. Nagai: "Ultra-discrete Toda molecule equation"Physics Letters A. 244. 383-388 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R. Willox: "The fermionic approach to Darboux transformation"Inverse Problems. 14. 745-762 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Nagai: "The Toda molecule equation and the ε-algorithm"Mathematics of Computation. 67. 1565-1575 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Nagai: "Soliton Cellular Automaton, Toda Molecule equation and Sorting Algorithm"Physics Letters A. 255. 265-271 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R. Willox: "Quadrilateral lattices and eigenfunctions potentials for N-component KP hierarchies"Physics Letters A. 252. 163-172 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Tokihiro: "Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization"Inverse Problems. 15. 1639-1662 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Nagai, T. Tokihiro and J. Satsuma: "The Toda molecule equations and ε-algorithm"Mathematics of Computation. 67. 1565-1575 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Willox, T. Tokihiro, I. Loris and J. Satsuma: "The fermionic approach to Darboux transformations"Inverse Problems. 14. 745-762 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Nagai, T. Tokihiro and J. Satsuma: "Ultra-discrete Toda molecule equation"Phys. Lett.. A244. 383-388 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Nagai, D. Takahashi and T. Tokihiro: "Soliton cellular automaton, Toda molecule equation and sorting algorithm"Physics Letters. A255. 265-271 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Willox, Y. Ohta, C. Gilson, T. Tokihiro and J. Satsuma: "Quadrilateral lattices and eigenfunction potentials for N-component KP hierarchies"Physics Letters. A252. 163-172 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Tokihiro, A. Nagai and J. Satsuma: "Proof of solitonical nature of box and ball system by Means of Inverse Ultra-discretization"Inverse Problems. 15. 1639-1662 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Tokihiro D Takahashi and J. Matsukidaira: "Box and ball system as a relization of ultradiscrete nonautonomous KP equation"J. Phys. A.. accepted for publication.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi