• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Mathematical Analysis of Infinite Dimensional Stochastic Models

Research Project

Project/Area Number 09640246
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionTOKYO INSTITUTE OF TECHNOLOGY

Principal Investigator

SHIGA Tokuzo  Graduate School of Science and Technology, Tokyo Institute of Technology, Professor, 大学院・理工学研究科, 教授 (60025418)

Co-Investigator(Kenkyū-buntansha) TANIGUCHI Masaharu  Graduate School of Informatics and EngineeringScience, Tokyo Institute of Technn, 大学院・理工学研究科, 講師 (30260623)
TAKAOKA Koichiro  Faculty of Commerce, Hitotsubashi University, Lecturer, 商学部, 講師 (50272662)
NINOMIYA Hirokazu  Faculty of Science, Ryukoku University, Lecturer, 理学部, 講師 (90251610)
MORITA Takehiko  Graduate School of Science and Technology, Tokyo Institute of Technology, Associ, 大学院・理工学研究科, 助教授 (00192782)
UCHIYAMA Kohei  Graduate School of Science and Technology, Tokyo Institute of Technology, Profes, 大学院・理工学研究科, 教授 (00117566)
Project Period (FY) 1997 – 1998
Keywordsinfinite dimensional diffusion / Flemig-Viot process / genetical model / unbounded selection / time-reversibility / stochastic partial differential equation / random walk in random environment / directed polymer model
Research Abstract

Performing the reseach based on the project plan we obtained the following reseach results.
1. Fleming-Viot processes play an important role in population genetics, for which we obtained two significant results.
First, we considered the model with mutation and unbounded selectionas genetic factors. In this case it has not proved even the well-posedness of the diffusion processes, which we settled together with the uniqueness problem of the stationary distributions. This work was caried out jointly with S.N.Ethier (USA). Furthermore we solved the problem of diffusion approximation from discrete time Markov chain models.
Second, we solved a reversibility problem for the Fleming-Viot processes with mutation and selection, that is to characterize the mutation operator for the process to have a reversible distribution. This work was done with Z.H.Li (China) and L.Yau (USA). (Shiga)
2. We considered a suvival probability problem of random walker in temporarily and spatially varing random environ … More ment, and obtained a precise asymprotics of the suvival probability for small parameter rigion. To prove it we developed a detailed analysis of linear stochastic partial differential equations which are dual objects of the random walk model. This result appeared as ajoint work with T.Furuoya.
Directed polymer model is a closely related with this problem in mathematical context, and we get some significant results on asymptotical behaviorof the random partition function in low dimensional case, which is harder than higher dimensional case. (Shiga)
3. For a mechanical many particle system Uchiyama established the hydrodynamic limit and identified its hydrodynamic equation, that is a diffusion equation in this situation.
4. For a dynamical system in cofinite Fuchsian groups which can be regarded as a Markov system, Morita developed a perterbational analysis of the transfer operator and solved some ergodic problem that is related to number theory.
5. Motivated by mathematical finance Takaoka obtained a neccesary and suffucient condition for a continuous local martingale to be uniformly integrable. Less

  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] T.Shiga: "Exponential decay rate of survival probability of in a disastrous random environment." Probab.Th.Rel.Fields. 108. 417-439 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuoya and T.Shiga: "Sample Lyapunov exponent for a class of linear Markovian systems over Z^d." Osaka J.Math.35. 35-72 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Cox.A.Greven and T.Shiga: "Finite and infinite systems of interacting diffusions : Cluster formation and universality properties." Math.Nachrich.に掲載予定.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Uchiyama: "Wiener's test for the random walks with mean zero and finite variance." Ann.Probab.26. 368-376 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Uchiyama: "Green's functions for random walks on Z^N. Proc." London Math.Soc.77. 215-240 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Uchiyama: "Scaling limit for a mechanical system of interacting particles II," Commun.Math.Phys.196. 681-701 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Uchiyama: "Scaling limitis for large systems of in teracting particles, in Advances in non-linear partial differential equations and stochastics" Adv.Math.Appl.Sci.ed.by S.Kawasima and T.Yanagisawa. 48. (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Morita: "Markov systems and transfer operators associated with cofinite Fuchsian groups" Ergod.Th.& Dynam.Sys.17. 1147-1181 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Takaoka: "Some remarks on the uniform integrability of continuous martingales." Seminaire de probabilites XXXIII掲載予定.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Mizoguchi, H.Ninomiya, and E.Yanagida: "Diffusion-induced blowup in a nonlinear parabolic system" J.Dynamics and Differential Equations. 10-3. 619-638 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Iida, T.Muramatsu, H.Ninomiya, and E.Yanagida: "Diffusion-induced extinction of a superior species in a competition systems" Japan J.Industrial and Applied Mathematics. 15-2. 233-252 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Mizoguchi, H.Ninomiya, and E.Yanagida: "Critical exponent for the bipolar blowup in a seminlinear parabolic equation" J.Math.Anal.and Appl.218. 495-518 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Taniguchi: "Multiple existence and linear stability of equilibrium balls in a nonlinear free boundary problem" Quart.Appl.Math.掲載予定.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yuji Nomura: "Absence of diffusion near the bottom of the spectrum for a random Schroedinger operator on L^2(R^3)" J.Math.Kyoto Univ.37. 639-687 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shiga: "Exponential decay rate of survival probability of in a disastrous random environment." Probab.Th.Rel.Fields. 108. 417-439 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuoya and T.Shiga: "Sample Lyapunov exponent for a class of linear Markovian systems over Z^d." Osaka J.Math. 35. 35-72 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Cox, A.Greven and T.Shiga: "Finite and infinite systems of interacting diffusions : Cluster formation and universality properties." Math.Nachrich.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Uchiyama: "Wiener's test for the random walks with mean zero and finite variance." Ann.Probab.26. 368-376 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Uchiyama: "Green's functions for random walks on Z^N." Proc.London Math.Soc.77. 215-240 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Uchiyama: "Scaling limit for a mechanical system of interacting particles II" Commun.Math.Phys.196. 681-701 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Uchiyama: "Scaling limits for large system of interacting particles" Adv.Math.Appl.Sci.48, ed.by S.Kawasima and T.Yanagisawa. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Morita: "Markov systems and transfer operators associated with cofinite Fuchsian groups" Ergod.Th.& Dynam.Sys. 17. 1147-1181 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Takaoka: "Some remarks on the uniform integrability of continuous martingales." Seminaire de Probabilites XXXIII.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Mizoguchi, H.Ninomiya, and E.Yanagida: "Diffusion-induced blowup in a nonlinear parabolic system" J.Dynamics and Differential Equations. 10-3. 619-638 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Iida, T.Muramatsu, H.Ninomiya, and E.Yanagida: "Diffusion-induced extinction of a superior species in a competition system" Japan J.Industrial and Applied Mathematics. 15-2. 233-252 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Mizoguchi, H.Ninomiya, and E.Yanagida: "Critical exponent for the bipolar blowup in a seminlinear parabolic equation" J.Math.Anal.and Appl.218. 495-518 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Taniguchi: "Multiple existence and linear stability of equilibrium balls in a nonlinear free boundary problem"" Quart.Appl.Math.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yuji Nomura: "Absence of diffusion near the bottom of the spectrum for a random Schroedinger operator on L^2(R^3)" J.Math.Kyoto Univ.Vol.37. 639-687 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi