1997 Fiscal Year Annual Research Report
時間遅れを含む数理生物モデルのパ-システンスとカオス
Project/Area Number |
09640256
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Research Institution | Shizuoka University |
Principal Investigator |
竹内 康博 静岡大学, 工学部, 教授 (20126783)
|
Keywords | 数理生物モデル / パ-システンス / カオス / 時間遅れ |
Research Abstract |
本研究の目的は数理生物学で基本的な概念であるパ-システンスが時間遅れの導入によりどのような影響を受けるかを調べるとともに、カオス現象を解析し、時間遅れをもった数理生物モデルの解析手法を確立することである。特に(1)生物の増殖プロセスと物質のリサイクリングプロセスに時間遅れを導入したケモスタットモデル;(2)伝染病の非感染者が保菌者から感染者に移行するプロセスに時間遅れを考慮した疫学モデル;(3)赤血球に薬物を閉じこめて患者に注射し、マクロファージが赤血球を食するための時間遅れを利用して薬物の投与効果を長時間持続させる医学上の方法についてのモデルを考察する。 本年度は上記(1)の数理モデルのパ-システンスとカオスに対する時間遅れの影響を研究する予定であった。しかし、8年度からの研究の継続を考え、数理モデル(2)と(3)のパ-システンスに対する時間遅れの影響をまとめ、さらに時間遅れをもった数理生物モデルの大域的安定性に対する解析手法を確立することに研究の焦点を絞った。得られた具体的な研究実績の概要は以下の通りである。 1.モデル(3)で、薬物の効果が長く持続するよう赤血球の齢分布を決定した(11の論文1)。 2.差分・微分不等式を証明し、非線形の遅れ型・中立型関数微分方程式系の安定性解析に応用した(論文3)。特に遅れ型を中立型に変換し安定性解析を見通しよくし、個体群力学系を解析した(論文2,4,5)。 3.上記2の手法をモデル(2)の解析に用いた(論文3)。 来年度は、上記2の手法をモデル(1)に適用するとともに時間遅れのカオスへの影響を考察する。特にモデル(1)についてはイタリアのベレッタ教授との共同研究を予定している。
|
Research Products
(6 results)
-
[Publications] E.Beretta: "A mathematical model for drug administration by using the phagocytosis of red blood cells" J.Math.Biology. 35. 1-19 (1996)
-
[Publications] W.B.Ma: "Stability analysis on neutral differential difference systems and population dynamics" 静岡大学大学院電子科学研究科研究報告. 18. 57-64 (1997)
-
[Publications] W.B.Ma: "Stability of neutral differential difference systems with infimite delays" Nonlinear Analysis Theory,Method & Analysis. (印刷中).
-
[Publications] Y.Takeuchi: "Global attractivity of mixed Lotka-Volterra differential systems with delays" Canadian Applied Mathematics Quarterly. (印刷中).
-
[Publications] W.B.Ma: "Stability analysis on a predator-prey system with distributed delay" J.Computational and Applied Mathematics. (印刷中).
-
[Publications] Y.Takeuchi: "Delay effect on threshold properties of SIR epidemic models" Proceeding of International Conf.Math.Biology '97. (印刷中).