• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Engenvalue Problem of Infinite Matrices and its Application.

Research Project

Project/Area Number 09640284
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionUniveristy of Aizu

Principal Investigator

IKEBE Yasuhiko  Univ.of Aizu, School of Computer Science and Engineering Professor, コンピュータ理工学部, 教授 (10114034)

Co-Investigator(Kenkyū-buntansha) KIKUCHI Yasushi  Univ.of Aizu, School of Computer Science and Engineering Instructor, コンピュータ理工学部, 講師 (60254059)
CAI Dongsheng  Univ.of Tsukuba, Inst.of Information Sciences and Electronics, Assistant Profess, 電子・情報工学系, 助教授 (70202075)
Project Period (FY) 1997 – 1998
KeywordsEigenvalue of Infinite Metrix / Conjugate Symmetric Tridiagonal Matrices / Special Function / Bessel Function / Mathiue Function / Visualization
Research Abstract

We consider an infinite complex symmetric (not necessarily Hermitian)tridiagonal matrix T whose diagonal elements diverge to * in modulus and whose off-diagonal elements are bounded. We regard T as a linear operator mapping a maximal domai n in the Hilbert space l^2 into l^2. Assuming the existence of T^<-1> we consider the problem of approximating a given simple eigenvalue lambda of T by an eigen value lambda_n of T_n, the n-th order principal submatrix of T.Let X = [x^<(1)>, x^<(2)>, ...]^T be an eigenvector corresponding to lambda. Assuning X^T X * *0 and f_<n+1> x^<(n+1)>/x^n * 0 as n * *, we will show that there exists a sequence [lambda_n] of T_n such that lambda-lambda _n=f_<n+1> x^<(n+1)> x^n[1+omicron(1)]/(X^T X) * 0, where f_<n+1> represents the (n, n+1) element of T.
Application to the following problems is included : (a) solve Jv(z) = 0 for v, given z * O and (b)compute the eigenvalues of the Mathieu equation. Fortunately, the existence of T^<-1> need not be verified for these examples since we may show that T + alphaI with alpha taken appropriately has an inverse.

  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] Y.Ikebe,Y.Kikuchi,N.Asai,Y.Miyazaki,D.Cai: "The Eigenvalue Problem for Infinite Matrices:New Area of Application of Numerical Linear Algebra" Proceedings of Fourth IMACS International Symposium on Scientific Computation(honoring Professor David M.Young). (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 宮崎佳典,浅井信吉,蔡東生,池辺八州彦: "Mathieu微分方程式の逆固有値問題" 応用数理. 8. 199-222 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Asai,et al: "Matrix methods for the Numerical Solution of zJ'v(z)+HJv(z)=0" Electronics and Communications in Japan. Vol.80,7. 44-54 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Ikebe, Y.Kikuchi, N.Asai, Y.Miyazaki, D.Cai: "The Eigenvalue Problem for Infinite Matrices : New Area of Application of Numerical Linear Algebra" Proceedings of Fourth IMACS International Symposium on Scientific Computation (honoring Professor David M.Young). (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Miyazaki, N.Asai, D.Cai and Y.Ikebe: "Inverse Eigenvalue problem of Mathieu's Differential Equation" Bulletin of the Japan Society for Industrial and Applied Mathematics. No.8. 199-222 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Asai, N., Y.Miyazaki, D.Cai, K.Hirasawa, and Y.Ikebe: "Matrix methods for the Numerical Solution of Jv'(z)+HJv(z)=0, (Selected Special Paper by Editor)" Electronics and Communications in Japan. Vol.807. 44-54 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi