• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Pattern Recognition based on the Convex Quadratic Mathematical Programming

Research Project

Project/Area Number 09680360
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionJapan Advanced Institute of Science and Technology, Hokuriku

Principal Investigator

VLACH Milan  JAIST, School of Information Science, Professor, 情報科学研究科, 教授 (40291372)

Co-Investigator(Kenkyū-buntansha) HIROSHI Shimodaira  JAIST, School of Information Science, Associate Professor, 情報科学研究科, 助教授 (30206239)
Project Period (FY) 1997 – 1999
KeywordsSupport Vector Machines / SVM / DTAK
Research Abstract

The aim of this research is to exploit the recent sophisticated pattern classification method defined as an optimization problem whose mathematical formulation is given as either linear or convex quadratic programming. One of the benefit of such mathematical programming comes from the fact that global solution can be found whereas most of the other optimization problems suffer from local minima problem. The outcomes of this three-year research are summarized bellow.
1. Extension of GOP and SVM for multi-class problems : Since Mangasarian's GOP and Vapnik's SVM show superior classification performance for two-class problems, extension of these methods for multi-class problems is promising. The proposed extension showed better classification performance on UCI ML datasets than the classical Bayes classifier with normal density.
2. New miss-classification measure for SVM : Although SVM is thought as a realization of the Vapnik's SRM principle, the miss-classification measure used in the SVM … More formulation is not a good estimation of the error rate in the SRM principle. The proposed new measure gives the number of miss-classified points on the training dataset without losing the convexity of its optimization problem that assures the existence of global solutions. Experimental results showed the proposed method gives slightly better performance on the NIST handwriting digits database.
3. SVM for classification of time-series data : A new variant of SVM was developed, which can classify time series pattern such as acoustic speech data. The proposed classifier named Chain Support Vector Classifier (CSVC) consists of several SV classifiers connected in cascade. The CSVC employs an iterative learning algorithm based on Viterbi-like segmentation and the one used for the conventional SVM, though convergence has not been proven yet expect for a special case. Preliminary experiments of on-line hand-writing digits recognition showed comparable classification performance of CSVC with the single-Gaussian hidden Markov models (HMM). Besides the CSVC, another model called DTAK-SVM (dynamic time-alignment kernel SVM) was also developed. Less

  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] 下平博: "Support Vector Machinesによる複数カテゴリの識別"電子情報通信学会技術研究報告、パターン認識・メディア理解. PRMU98-36. 1-8 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 下平博: "Support Vector Machineの複数クラス分類問題における定式化"画像の認識・理解シンポジウム(MIRU'98). II. 151-156 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroshi Shimodaira: "Support Vector Machines for Multi-Class Pattern Classification Problems"Proc. of International Conference on Operations Research 98. 68-68 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroshi Shimodaira: "Modified Minimum Classification Error Learning and Its Application to Neural Networks"Springer, Advances in Pattern Recognition. LNCS1451. 785-794 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Jun Rokui: "Improving the Generalization Performance of the Minimum Classification Error Learning and Its Application to Neural Networks"The Fifth International Conference on Neural Information Processing (ICONIP'98). 63-67 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Jun Rokui: "Multistage building learning based on misclassification measure"Proc. of ICANN99. 221-226 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中井浩一: "Supprt Vector Machineによる時系列パターンの認識"電子情報通信学会技術報告パターン認識とメディア理解(PRMU). 99-167. 15-20 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Jaroslav Ramik: "Generalized Quasiconcavity and Compromise Solution Generalized"Optimization, Modeling And Algoritmus. 13. 296-304 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Shimodaira: "Multi-class Classification by Support Vector Machines (in Japanese)"IEICE Technical report. PRMU98-36. 1-8 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Shimodaira: "Formulation of Support Vector Machines for Multi-class Classification Problems (in Japanese)"Meeting on Image Recognition and Understanding 1998 (MIRU1998). Vol.2. 151-156 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Shimodaira: "Support Vector Machines for Multi-Class Pattern Classification Problems"Proc.of International Conference on Operations Research. 98. 68 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Shimodaira: "Modified Minimum Classification Error Learning and Its Application to Neural Networks"Springer, Advances in Pattern Recognition, LNCS. 1451. 785-794 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Jun Rokui: "Improving the Generalization Performance of the Minimum Classification Error Learning and Its Application to Neural Networks"The Fifth International Conference on Neural Information Processing (ICONIP'98). 63-67 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Jun Rokui: "Multistage building learning based on misclassification measure"ICANN99. 221-226 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichi Nakai: "Time-series Pattern Recognition by Support Vector Machines"IEICE Technical report. PRMU99-167. 15-20 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Jaroslav Ramik: "Generalized Quasiconcavity and Compromise Solutions"Optimization, Modeling And Algoritmus. Vol.13. 296-304 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ken'ichi Noma: "Sequential-Pattern Recognition by Support Vector Machines Using Dynamic Time-Alignment Kernels"IEICE Technical report PRMU2000-128. 63-68 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26   Modified: 2021-04-07  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi