• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Sovable Models of Finite Multi-resolution analysis

Research Project

Project/Area Number 09680362
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionTokyo Institute of Technology

Principal Investigator

WATANABE Sumio  Precision and Intelligence Laboratory, Associate Professor, 精密工学研究所, 助教授 (80273118)

Project Period (FY) 1997 – 1999
KeywordsMulti-Resolution Analysis / Neural networks / Learning Theory / Function approximation / Statistical Estimation / b-function / Singularities / Hironaka's resolution
Research Abstract

Learning models with finite multi-resolution functions, for example, neural networks, gaussian mixtures, and finite wavelets, are often used in pattern recognition, robotic control, and time sequence prediction. However, their mathematical foundation has not been established because they are not linear or not regular models. In this research, we clarified the two aspects of their mathematical properties, (1) function approximation abilities, and (2) statistical estimation effciencies.
(1) It is well known that function approximation errors by their models depend on the functional topologies. In this research, we proposed a method to clarify the function approximation errors based on the assumption that the target functions are randomly taken from the function probability measures. Based on this assumption, we proved that the average function approximation errors are determined by the covariance of the coeficients of the functions, or the sparseness of the functions. This result shows a critrion whether the multi-resolution analysis is useful or not.
(2) In order to clarify the statistical estimation errors, we have shown that the stochastic complexity of the learning model is determined by the deepest singularities of the model, and we developed an algorithm to calculate the learning efficiency based on the Sato-Bernstein's b-function and Hironaka's resolution of singularities.
The problems for the future are to depelop a method to estimate the functional probability measure of the images and sounds and to establish the mathematical foundation of the maximum likelihood method.

  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] 渡邊澄夫: "ベイズ法による階層型統計モデルの汎化誤差について"電子情報通信学会論文誌. J81-A. 1442-1452 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sumio Watanabe: "Realizable approximation bounds for a solvable neural network"Approximation Theory. Vol. 1. 347-354 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sumio Watanabe: "Inequalities of Generalization errors for layered neural networks in Bayesian learning"Proc. of Int. Conf. on Neural Information Processing. Vol. 1. 59-62 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sumio Watanabe: "Approximation bounds for layered lerning machines and environmental probability measures"Proc. of Int. Conf. on Computational Intelligence and Neuroscience. Vol. 2. 135-138 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sumio Watanabe: "Algebraic analysis for neural network learning"Proc. of IEEE Systems, Man, and Cybernetics. CD ROM. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sumio Watanabe: "Algebraic analysis for singular statistical estimation"Lecture Notes on Computer Science. 1720. 39-50 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sumio Watanabe: "Algebraic analysis for non-regular learning machines"Neural Information Processing Systems. 12. 356-362 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 1-22 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 1-18 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Watanabe and K. Fukumizu: "Algorithms and Architectures"Academic Press. 456 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 渡邊澄夫: "データ学習アルゴリズム"共立出版. 150 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Watanabe: "On the generalization error by a layered statistical model with Bayesian estimation"IEICE Trans.. Vol. J81-A, No. 10. 1442-1452 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Watanabe: "Realizable approximation bounds for a solvable neural network"Approximation Theory, Vol. 1, Vaderbilt University Press. 347-354 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Watanabe: "Inequalities of Generalization Errors for Layered Neural Networks in Nayesian Learning"Proc. of Int. Conf. on Neural Information Processing. 59-62 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Watanabe: "Approximation bounds for layered learning machines and environmental probability measures"Proc. of Int. Conf. on Computational Intelligence and Neuraoscience. Vol. 2. 135-138 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Watanabe: "Algebraic analysis for neural network learning"Proc. of IEEE Systems, Man Cybernetics. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Watanabe: "Algebraic analysis for singular statistical estimation"Lecture Notes on Computer Sciences. 1720. 39-50 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Watanabe: "Algebraic analysis for non-regular learning machines"Neural Information Processing Systems. 12. 356-362 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Watanabe and K. Fukumizu: "Algorithms and Architectures"Academic Press. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Watanabe: "Algorithms for learning from data"Kyoritsu-Shuppan. (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi