1998 Fiscal Year Annual Research Report
Project/Area Number |
09740112
|
Research Institution | Saga University |
Principal Investigator |
久保 雅弘 佐賀大学, 理工学部, 助教授 (80205129)
|
Keywords | 非線型解析 / 偏微分方程式 / 発展方程式 / 変分不等式 / 数理物理 / 相転移現象 / 力学系 / 関数解析 |
Research Abstract |
研究目的、実施計画課題の中で「相転移モデルの解の構造」に関して剣持教授(千葉大学)との共同研究により得られた成果の概要を述べる。 平成9年度には、Penrose-Fife(Physica D,1990)によって導入された、温度変化を考慮した相転移モデルの初期境界値問題が、適当な関数空間を設定することにより、well-posedであること、即ち、解が一意的に存在し、かつデータに連続的に依存することを証明した。 本年度は、まずPenrose-Fife modelの解の定義する力学系の漸近挙動を研究した。その際、無限次元力学系の一般論を直接適用することはできず、解のデータに関する連続依存性を詳細に解析することにより、Global attractorの一意的存在を証明することができた。 これらの結果は論文「Weak solutions of nonlinear systems for nonisothermal phase transitions」としてAdvances in Mathematical Sciences and Applicationsに掲載予定である。 さらに、本年度はHysteresisの効果を考慮したphase change modelを研究した。物理的にはsupercooling,superheatingを伴う相転移現象を記述する。変分法的に問題の弱形式を定式化すると、quasi-variational inequalityとなり、time-dependent subdifferentialの方法により、解の存在が一般的な条件のもとで示された。この結果については現在論文「A Phase-Field Model with Temperature Dependent Constraint」としてまとめているところである。
|
Research Products
(2 results)
-
[Publications] N,Kenmochi ,M,Kudo: "Weak solutions of nonlinear systems for non-isothermal phase transitions"
-
[Publications] Advances in Mathematical Sciences and Applications. (発表予定).