• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Design of Precision-Guaranteed Geometric Algorithms

Research Project

Project/Area Number 10205205
Research Category

Grant-in-Aid for Scientific Research on Priority Areas (B)

Allocation TypeSingle-year Grants
Research InstitutionThe University of Tokyo

Principal Investigator

SUGIHARA Kokichi  University of Tokyo, Graduate School of Engineering, Professor, 工学系研究科, 教授 (40144117)

Co-Investigator(Kenkyū-buntansha) IMAI Toshiyuki  Wakayama Univ., School of System Eng., Associate Professor, システム工学部, 助教授 (90213214)
YAMAMOTO Osami  Aomori Univ., School of Eng., Lecturer, 工学部, 講師 (60200789)
HAYAMI Ken  Univ. of Tokyo, Graduate School of Engineering, Associate Professor, 工学系研究科, 助教授 (20251358)
HIYOSHI Hisamoto  Gunma Univ., School of Eng., Assistant, 工学部, 助手 (40323331)
NISHIDA Tetsushi  University of Tokyo, Graduate School of Engineering, Assistant, 工学系研究科, 助手 (80302751)
Project Period (FY) 1998 – 2000
Keywordsrobust computation / exact computation / precision-guaranteed computation / Voronoi diagram / interval algebra / evaluation of errors / area without zero points / lazy evaluation
Research Abstract

Geometric algorithms are important techniques and have many applications in geographic information system, pattern recognition, robot motion planning, computer graphics and finite element analysis. They are studied in computational geometry, but are not necessarily robust against numerical errors. The goal of this project is to overcome this difficulty using precision-guaranteed computation.
We developed a new principle for designing numerically robust geometric algorithm. This principle consists of the evaluation of computational errors, exact-precision computation, acceleration of computation using floating- point filter, symbolic perturbation for avoiding degeneracy, and another acceleration method based on graphics hardware. This principle was applied to the construction of three-dimensional Delaunay diagrams and its application to mesh generation and the construction of a generalized Voronoi diagram for the evaluation of teamwork in sports.
For more difficult geometric problems such as the construction of the crystal Voronoi diagram, we developed another robust method. In this method, the geometric problem is reformulated in terms of a partial differential equation, and is solved using finite-difference method, the fast-marching method, in particular. We applied this method to the robot motion planning, in which the collision-free shortest path among enemy robots is computed, and could prove that our new method is more efficient than previous methods.

  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] K.Sugihara, M.Iri, H.Inagaki, T.Imai: "Topology-oriented implementation---An approach to robust geometric algorithms"Algorithmica. 27. 5-20 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Sugihara: "How to make geometric algorithms robust"IEICE Transactions on Information and Systems. E83-D. 447-454 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Sugihara: "Three-dimensional convex hull as a fruitful source of diagrams"Theoretical Computer Science. 235. 325-337 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hiroshima, Y.Miyamoto, K.Sugihara: "Another proof of polynomial-time recognizability of Delaunay graphs"IEICE Transactions on Fundamentals. E83-A. 627-638 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Hiyoshi, K.Sugihara: "Voronoi-based interpolation with higher continuity"Proceedings of the 16th Annual Symposium on Computational Geometry. 242-250 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Hiyoshi, K.Sugihara: "A sequence of generalized coordinate systems based on Voronoi diagran and its application to interpolation"Proceedings of Geometric Modeling and Processing 2000. 129-137 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Hiyoshi, K.Sugihara: "An inerpolant based on line segment Voronoi diagrams"Discrete and Computational Geometry,Lecture Notes in Computer Science. 1763. 119-128 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Hiyoshi, K.Sugihara: "Two generalizations of an interpolant based on Voronoi diagrams"International Journal of Shape Modeling. 5. 219-231 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Sugihara: "Surface interpotation based on new local coordinates"Computer Aided Geometric Design. 31. 51-58 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Sugihara: "Resolvable representation of polyhedra"Discrete and Computational Geometry. 21. 243-255 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Minakawa, Sugihara: "Topology-oriented construction of three-dimensional convex hulls"Optimization Methods & Software. 10. 357-371 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Okabe, B.Boots, K.Sugihara, S.-N.Chiu: "Spatial Tessellations---Concepts and Applications of Voronoi Diagrams,Second Edition"Voronoi diagram of a circle set from Voronoi diagram of a point set,I Topology. 671 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 杉原厚吉, 今井敏行: "工学のための応用代数"共立出版. 174 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K. Sugihara, M. Iri, H. Inagaki and T. Imai: "Topology-oriented implementation---An approach to robust geometric algorithms"Algorithmica. 27. 5-20 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Sugihara: "How to make geometric algorithms robust"IEICE Transactions on Information and Systems. E83-D. 447-454 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Sugihara: "Three-dimensional convex hull as a fruitful source of diagrams"Theoretical Computer Science. 235. 325-337 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Hiroshima, Y. Miyamoto and K. Sugihara: "Another proof of polynomial-time recognizability of Delaunay graphs"IEICE Transactions on Fundamentals. E83-A. 627-638 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Hiyoshi and K. Sugihara: "Voronoi-based interpolation with higher continuity"Proceedings of the 16th Annual Symposium on Computational Geometry. 242-250 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Hiyoshi and K. Sugihara: "A sequence of generalized coordinate systems based on Voronoi diagrams and its application to interpolation"Proceedings of Geometric Modeling and Processing. 2000. 129-137 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Hiyoshi and K. Sugihara: "An inerpolant based on line segment Voronoi diagrams"Discrete and Computational Geometry, Lecture Notes in Computer Science. 1763. 119-128 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Hiyoshi and K. Sugihara: "Two generalizations of an interpolant based on Voronoi diagrams"International Journal of Shape Modeling. 5. 219-231 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Sugihara: "Surface interpotation based on new local coordinates"Computer Aided Geometric Design. 31. 51-58 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Sugihara: "Resolvable representation of polyhedra"Discrete and Computational Geometry. 21. 243-255 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Minakawa and K. Sugihara: "Topology-oriented construction of three-dimensional convex hulls"Optimization Methods & Software. 10. 357-371 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi