• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Study on Artinian rings with self-duality

Research Project

Project/Area Number 10440008
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionYamaguchi University

Principal Investigator

OSHIRO Kiyoichi  Faculty of Science, Yamaguchi University Professor, 理学部, 教授 (90034727)

Co-Investigator(Kenkyū-buntansha) SUMIOKA Takeshi  Osaka City University, Faculty of Science, Associate Professor, 理学部, 助教授 (90047366)
YOSHIMURA Hiroshi  Faculty of Science, Yamaguchi University, Lecturer, 理学部, 講師 (00182824)
KUTAMI Mamoru  Faculty of Science, Yamaguchi University, Associate Professor, 理学部, 助教授 (80034734)
HOSHINO Mitsuo  Tsukuba University, Institute of Mathematics, Lecturer, 数学部, 講師 (90181495)
KADO Jiro  Osaka City University, Faculty of Science, Lecturer, 理学部, 講師 (10117939)
Project Period (FY) 1998 – 1999
KeywordsQF-ring / Nakayama ring / Harada ring / Morita duality / Injective pair / Extending module / Lifting modules / Nakayama automorphism
Research Abstract

Though the title of this investigation is on the study of artinian rings with self-duality, our main purpose is to establish the bottom current of artinian rings. In the early 1980's, M. Harada introduced two new classes of artinian rings. However, the head investigator Oshiro showed that these two classes are the same class and contain quasi-Frobenius rings and Nakayama rings which are classical artinian rings. Oshiro called this new artinian ring "Harada ring" and extensively studied the structure of these rings and applied to classical artinian rings during the past twenty years. His fundamental theorems are following :
(1)Every Harada rings can be constructed by Quasi-Frobenius rings. Major applications of this theorem are followings :
(2)Every Nakayama rings can be constructed by Quasi-Frobenius Nakayama rings, and moreover.
(3)Every Quasi-Frobenius Nakayama rings can be constructed by skew matrix rings over local Nakayama rings. Thus we can say that there are deep relations between Quasi-Frobanius rings, Nakayama rings and Harada rings, and the essence of the structure of Nakayama rings takes root in skew matrix rings over local Nakayama rings.
Under these cricumstances, in our investigation, we studied the self- duality of Harada rings and showed the following are equivalent problems.
(1)Are Harada rings self-dual?
(2)Has every Quasi-Frobenius Nakayama automorphisms?
This result was published in Kado-Oshiro : HARADA rings and self-duality, J. Algebra (1999). Further-more, recently, using Kaemer's theorem, KOIKE pointed out that there are counter examples in our problems above. Thus, our investigation is now completed and bottom current of artinian rings becomes clear.

  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] 大城 紀代市: "On the relative continuity of modules"Communication in ALgebra. 26. 3497-3510 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大城 紀代市: "On QF-serial rings"第31回環論 表現論シンポジウム報告書. 26. 162-170 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大城 紀代市: "Self-duality and Harada rings"J.ALgebra. 211. 384-408 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大城 紀代市: "Artm環におけるHaradaの理論と関連するトピックス"第44回 代数学シンポジウム報告書. 44. 31-39 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大城 紀代市: "Theories of Harada in Antinian rings and applications to calssical antinian rings"Trends in Math. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 倉富 要輔: "CS-property of direct sums of uniform modules"Trends in Math. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] OSHIRO, Kiyoichi: "On the relative (quasi-) continuity of modules"Communications in Algebra. 26(11). 3497-3510 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] OSHIRO, Kiyoichi: "On QF-serial rings, Proceeding of the 31th Ring and Representation Theory"Osaka City University. 162-170 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] OSHIRO, Kiyoichi: "Theories of HARADA in Artinian rings and applications to classical Artinian rings"Trends in Math., Birkhauser.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KADO, Jiro: "Self-duality and HARADA rings"J. Algebra. 221. 384-408 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KADO, Jiro: "CS-property of direct sums of uniform modules"Trends in Math., Birkhauser.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KURATOMI, Yousuke: "On direct sums of extending modules and internal exchange property"32th Ring and Representation Theory. 1-17 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KUTAMI, Mamoru: "On some properties of simple unit regular rings"Communications in Algebra. 26(11). 3821-3835 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KUTAMI ,Mamoru: "On regular rings with S-comparability"Communications in Algebra. 27(6). 2917-2933 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] YOSHIMURA, Hiroshi: "Rings whose invertible ideals correspond to finitely gendrated over modules"Communications in Algebra. 26(3). 3497-3510 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] YOSHIMURA, Hiroshi: "FPF-rings characterized by two-generated faithful modules"Osaka J. Math. 35. 855-872 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] YOSHIMURA, Hiroshi: "Finitely pseud-Frobenius rings"Trends in Math., Birkhauser.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] HOSHINO, Mitsuo: "Injective pairs in perfect rings"Osaka J. Math. 35. 501-508 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] "On non-commutative Gorenstein rings"Proceeding of the 44th Algebra symposium (Tokyo University). 16-24 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] MORIMOTO, Mari: "On dual pairs in simple injective modules"Osaka J. Math. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] SUMIOKA, Takashi: "On (M,N)-injective modules"The Proceedings of the 32nd Symposium on Ring and representation Theory(Yamaguchi). 123-129 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] IIYORI, Nobuo: "Introduction of a theory of functions over groups"Proceeding of the 43th Algebra Symposium. 47-51 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KASHIEAGI, Yoshimi: "Indecomposability of cyclic codes"Discrete Mathematics. 196. 277-280 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi