• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Symplectic Structures and Geometry of Canonical Bundle

Research Project

Project/Area Number 10440021
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

MABUCHI Toshiki  Graduate School of Science Osaka University, Prof., 大学院・理学研究科, 教授 (80116102)

Co-Investigator(Kenkyū-buntansha) WENG Lin  Nagoya Univ., Math, Dept. Osaka University, Assoc.Prof., 多元数理科学研究科, 助教授 (60304002)
KOBAYASHI Ryoichi  Nagoya Univ., Math.Dept. Osaka University, Prof., 多元数理科学研究科, 教授 (20162034)
FUJIKI Akira  Graduate School of Science Osaka University, Prof., 大学院・理学研究科, 教授 (80027383)
SAKUMA Makoto  Graduate School of Science Osaka University, Assoc.Prof., 大学院・理学研究科, 助教授 (30178602)
KONNO Kazuhiro  Graduate School of Science Osaka University, Assoc.Prof., 大学院・理学研究科, 助教授 (10186869)
Project Period (FY) 1998 – 2000
Keywordssymplactic structure / Kahler structure / canonical bundle / anticanonical bundle / Kahler-Einstein metric / Hitchin-Kobayashi correspondence / Futaki choracter / stability
Research Abstract

We focussed our study on the "Hitchin-Kobayashi correspondence for manifolds" which is one of the most interesting topics in our project. For a Fano manifold, such a correspondence is supposed to relate the Chow-Mumford stability of the manifold with the existence of Kahler-Einstein metrics. As a first step, we obtained :
(1) For a certain generalization of Kahler-Einstein metrics, we showed the uniqueness of such metrics modulo holomorphic automorphisms on a given Fano manifold. Hence, even in this generalized context, the above correspondence is one-to-one. (In the case of Kahler-Ricci solitons, a similar result was obtained also by Tian and Zhu.)
Recently, we also saw the following :
(2) In a joint work with H.Nakagawa, we succeeded in characterizing the Futaki character of a Fano manifold as an obstruction to Chow-Mumford semistability of the manifold.
(3) In complex analytic studies of a polarized manifold, the asymptotic stability of the manifold has a strong relationship, via the asymptotic behavior of the Bergman metrics, with the existence of metrics of constant scalar curvature in the polarized Kahler class.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] Mabuchi,T.: "A theorem of Calabi-Matsushima's type"Osaka J.Math. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mabuchi,T.: "Vector field energies and critical metrics on Kahler manifolds"Nagoya Math.J. (to appear). 162. (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mabuchi,T.: "Kahler-Einstein metrics for manifolds with nonvanishing Futaki character"Tohoku Math.J. (to appear). 53. (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kobayashi,R.: "Holomorphic curves in abelian varieties : the second main theorem and applications"Japanese J.Math . 26. 129-152 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Konno,K.: "clifford index and the slope of fibered surfaces"J.Algebraic Geom.. 8. 207-220 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Fujiki,A.: "Compact self-dual manifolds with torus actions"J.Differential Geom.(to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mobuchi,T.(共著): "Encyclopaedia of Mathematics, Supplement II (Kahler-Einsteir manifold,Kahler-Einstein metricの項目担当)"Kluwer Acad. Publishers. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mabuchi, T.: "A theorem of Calabi-Matsushima's type"Osaka J.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mabuchi, T.: "Vector field energies and critical metrics on Kahler manitolds"Nagoya Math.J.. Vol.162(to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mabuchi, T.: "Kahler-Einstein metrics for manifolds with vanishing Futaki character"Tohoku Math.J.. Vol.53(to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kobayahi, R.: "Holomorphic curves in abelian varieties : the second main theorem and applications"Japanese J.Math.. Vol.26. 129-152 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Konno, K.: "Clifford index and the slope of fibered surfaces"J.Algebraic Geom.. Vol.8. 207-220 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Fujiki, A.: "Compact self-dual manifolds with torus actions"J.Differential Geom.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mabuchi, T.(joint work with many authors): "Kahler-Einstein manifold, Kahler-Einstein metric (Articles in Encyclopaedia of Mathematics, Supplement II)"Kluwer Acad.Publishers. (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26   Modified: 2021-04-07  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi