• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Construction of submanifold with constant mean curvature, and its applications

Research Project

Project/Area Number 10440024
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyushu University (2000)
Kumamoto University (1998-1999)

Principal Investigator

YAMADA Kotaro  Kyushu University, Faculty of Math., Prof., 大学院・数理学研究院, 教授 (10221657)

Co-Investigator(Kenkyū-buntansha) ROSSMAN Wayne  Kobe Univ., Fac.of Sci., Assoc.Prof., 理学部, 助教授 (50284485)
CHO Koji  Kyushu University, Faculty of Math., Assoc.Prof., 大学院・数理学研究院, 助教授 (10197634)
YAMAGUCHI Takao  Kyushu University, Faculty of Math., Prof., 大学院・数理学研究院, 教授 (00182444)
INOUE Hisao  Kumamoto Univ., Fac.of Sci., Lect., 理学部, 講師 (40145272)
KUROSE Takashi  Fukuoka Univ., Fac.of Sci., Assoc.Prof., 理学部, 助教授 (30215107)
Project Period (FY) 1998 – 2000
Keywordsminimal surfaces / Weierstrass representation / CMC-1 surface / Gauss map / Osserman inequality / Total curvature
Research Abstract

We investigated properties of minimal surfaces in the three dimensional euclidean space using the Weierstrass representation formula, and generalizations of them. First, we gave an affirmative result for an inverse problem of flux for minimal surfaces in the three dimensional euclidean space. Moreover, as a generalization of (a complex analytic) flux, we defined a new homology invariant, which is also called as "flux", for surfaces of constant mean curvature one in the hyperbolic three space. Using the balancing formula of the flux, we proved some non-existence results for constant mean curvature one surface in hyperbolic space.
As a continuation of this non-existence results, we tried to classify the complete constant mean curvature one surface in hyperbolic space with low total absolute curvature, and we obtained the complete classification for surfaces with total absolute curvature less than or equal to 4π.
On the other hand, as a generalization of the Weierstrass-type representation formula for minimal surface with higher dimensional euclidean space, we defined a notion of surfaces with holomorphic right gauss map in some non-compact type symmetric space, and obtained the Weierstrass-Bryant type representation formula. As an application of this formula, we obtained an Osserman-type inequality for total absolute curvature.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] W.Rossman,K.Yamada et.al: "Mean curvature 1 surfaces with low total curvature in hyperbolic 3-space"Advanced Studies in Pure Mathematics. 29. 279-297 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Umehara and K.Yamada: "Metrics of constant curvature 1 with three conical singularities on 2-sphere"Illinois Journal of Mathematics. 44. 72-94 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] W.Rossman,K.Yamada, et.al: "A new flux for mean curvature 1 surfaces in hyperbolic 3-space, and applications"Proceedings of the American Mathematical Society. 12. 2147-2154 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Kato,K.Yamada, et.al: "General existence of minimal surfaces of genus zero with catenoidal ends and prescribed flux"Communications in Analysis and Geometry. 8. 83-114 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kurose: "Two characterizations of the standard affine connection on a sphere"Fukuoka University Science Reports. 30. 179-180 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kurose: "Conformal-projective geometry of statistical manifolds"the Interdisciplinary Information Sciences. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] W.Rossman, M.Umehara and K.Yamada: "Mean curvature 1 surfaces with low total curvature in hyperbolic 3-space"Advanced Studies in Pure Mathematics. vol.29. 279-297 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Umehara and K.Yamada: "Metrics of constant curvature 1 with three conical singulaerities on 2-sphere"Illinois Journal of Mathematics. vol.44. 72-94 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] W.Rossman, M.Umehara and K.Yamada: "A new flux for mean curvature 1 surfaces in hyperbolic 3-space, and applications"Proceedings of the American Mathematical Society. vol.12. 21247-2154 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kato, M.Umehara and K.Yamada: "General existence of minimal surfaces of genus zero with catenoidal ends and prescribed flux"Communications in Analysis and Geometry. vol.8. 83-114 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kurose: "Two charactrerizations of the standard affine connection on a sphere"Fukuoka University Science Reprorts. vol.30. 179-180 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kurose: "Conformal-projective geometry of statistical manifold"The Interdisciplinary Information Sciences. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26   Modified: 2021-04-07  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi