• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

A study on semi-selfdecomposable distributions and semi-selfsimilar stochastic processes

Research Project

Project/Area Number 10440033
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKeio University

Principal Investigator

MAEJIMA Makoto  Keio University Mathematics Professor, 理工学部, 教授 (90051846)

Co-Investigator(Kenkyū-buntansha) KAWAZOE Takeshi  Keio University Fac.of Policy Management Professor, 総合政策学部, 教授 (90152959)
TAMURA Yozo  Keio University Mathematics Associate Professor, 理工学部, 助教授 (50171905)
NAKADA Hitoshi  Keio University Mathematics Professor, 理工学部, 教授 (40118980)
WATANABE Toshiro  The Univ. of Aizu Center for Mathematical Sciences Assistant Professor, 総合数理科学センター, 専任講師 (50254115)
SATO Ken-iti  Nagoya Univ. Professor emeritus, 名誉教授 (60015500)
Project Period (FY) 1998 – 2000
Keywordsinfinitely divisible distributions / selfdecomposable distributions / semi-selfdecomposable distributions / type G distributions / selfsimilar stochastic processes / semi-selfsimilar stochastic processes / levy processes / absolute continuity
Research Abstract

1. The structure of the classes of semi-selfdecomposable distributions and its nested subclasses were clarified among the class of all infinitely divisible distributions. We introduced a way of making a new class of limitinz distributions derived from a class of distributions by taking the limit through some subsequence of normalized partial sums of independent random variables. We characterized completely a sort of a fixed point of this procedure.
2. In contrast to the absolute continuity of all selfdecomposable distributions, we found that semi-selfdecomposable distributions are not necessarily absolutely continuous. We also found a subclass of semi-selfdecomposable distributions which are always absolutely continuous.
3. We constructed some examples of non-selfdecomposable (or non-semi-selfdecomposable) distributions whose projections to lower dimensional spaces are selfdecomposable (or semi-selfdecomposable). This property has a sharp contrast to stable distributions.
4. We found that the marginal distributions of semi-selfsimilar processes at a time is selfdecomposable. We also found that their joint distributions at several times are closely related to nested subclasses of selfdecomposable distributions. It is also proved that similar observations remain true between selfdecomposable distributions and selfsimilar processes.
5. We succeeded in defining multivariate type G distributions and found a necessary and sufficient condition for that they are selfdecomposable. We also defined a sequence of nested subclasses of type G distributions and succeeded in making a new refinement of the class of infinitely divisible distributions.

  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] M.Maejima,Y.Naito: "Semi-selfdecomposable distributions and a new class of limit theorems"Probab.Th.Rel.Fields. 112. 13-31 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Maejima,K.Sato: "Semi-selfsimilar processes"J.Theoret.Probab.. 12. 347-373 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Maejima,K.Sato,T.Watanabe: "Distributions of selfsimilar and semi-selfsimilar processes with independent increments"Statist.Probab.Lett.. 47. 395-401 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Maejima,K.Suzuki,Y.Tamura: "Some multivariate infinitely divisible distributions and their projections"Probab.Math.Statist.. 19. 421-428 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Maejima,K.Sato,T.Watanabe: "Completely operator semi-selfdecomposable distributions"Tokyo J.Math.. 23. 235-253 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] P.Embrechts,M.Maejima: "An introduction to the theory of self-similar stochastic processes"Intern.J.Modern Physics B. 14. 1399-1420 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Sato: "Levy Processes and Infinitely Divisible Distributions"Cambridge University Press. 486 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 河添健: "群上の調和解析"朝倉書店. 186 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Maejima and Y.Naito: "Semi-selfdecomposable distributions and a new class of limit theorems"Probab.Th.Rel.Fields. Vol.112. 13-31 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Maejima and K.Sato: "Semi-selfsimilar processes"J.Theoret.Probab.. Vol.12. 347-373 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Maejima, K.Sato and T.Watanabe: "Distributions of selfsimilar and semi-selfsimilar processes with independent increments"Statrst.Probab.lett. Vol.47. 395-401 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Maejima, K.Suzaki and Y.Tamura: "Some multivariate infinitely divisible distributions and their projections"Probab.Math.Stutrst.. Vol.19. 421-428 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Maejima, K.Sato and T.Watanabe: "Completely operator semi-selfdecomposable distributions"Tokyo J.Math.. Vol.23. 235-253 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] P.Embrechts and M.Maejima: "An introduction to the theory of self-similar stochastic processes"Intern.J.Modern Physics B. Vol.14. 1399-1420 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Sato: "Levy Processes and Infinitely Divisible Distributions"Cambridge University Press. (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi