• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Research on Elementary Solutions to Partial Differential Equations

Research Project

Project/Area Number 10440036
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionTOHOKU UNIVERSITY

Principal Investigator

SHIMAKURA Norio  Graduate School of Sciences, Tohoku University, Professor, 大学院・理学研究科, 教授 (60025393)

Co-Investigator(Kenkyū-buntansha) IGARI Satoru  Graduate School of Sciences, Tohoku University, Professor, 大学院・理学研究科, 教授 (50004289)
FUJIE Satsuro  Graduate School of Sciences, Tohoku University, Lecturer, 大学院・理学研究科, 講師 (00238536)
TAKAGI Izumi  Graduate School of Sciences, Tohoku University, Professor, 大学院・理学研究科, 教授 (40154744)
HORIHATA Kazuhiro  Graduate School of Sciences, Tohoku University, Assistant, 大学院・理学研究科, 助手 (10229239)
NAGASAWA Takeyuki  Graduate School of Sciences, Tohoku University, Associate Professor, 大学院・理学研究科, 助教授 (70202223)
Project Period (FY) 1998 – 1999
Keywordsmetric principal part / causal domain / Hadamard coefficients / tail term of elementary solution / coincidence values / conformal gauge transform / moments / Huygens operator
Research Abstract

We effectuated researches on strong lacunas of elementary solutions to the second order partial differential equations of hyperbolic type with coefficients of class CィイD1∞ィエD1, and also studies of related domains in geometry. Researches on strong labunas had made a remarkable progress by several works due to P.Gunther and his group. For a further development, however, it is indispensable to find a systematical method to construct operators whose elementary solutions admit strong lacunas. Therefore, the head investigator began by a research, from a view pint of real analysis, on normal coordinate systems which are of fundamental importance in the theory of elementary solutions.
Let n be an even or odd number not smaller than 2, and γ=(γィイD1jkィエD1)ィイD3n(/)j,k=1ィエD3 be a real symmetric non-singular matrix of order n. Take Cartesian coordinates x = (xィイD11ィエD1, …, xィイD1nィエD1) in RィイD1nィエD1. A function A(x) = (aィイD2rィエD2ィイD1sィエD1(x))ィイD3n(/)r,s=1ィエD3, with values in the space of square matri … More ces of order n, is said to be an element of a vector space V if and only if it satisfies two identities aィイD2rィエD2ィイD1bィエD1(x)γィイD2bsィエD2 = aィイD2sィエD2ィイD1bィエD1(x)γィイD2brィエD2 and xィイD1rィエD1aィイD2rィエD2ィイD1sィエD1(x) = 0. Then, there exists a one to one correspondence between an element of V and a pseudo-Riemannian metric gィイD2jkィエD2(x)dxィイD1iィエD1dxィイD1kィエD1 in a neighborhood of x = 0 having x as normal coordinates and satisfying gィイD2jkィエD2(0) = γィイD2jkィエD2. This is a theorem established by applying the theory of degenerating partial differential equations. To be more precise, we denote Y = xィイD1iィエD1ィイD7∂(/)∂xィイD1jィエD1ィエD7 and define three matrix functions S(x), N(x), R(x) involving components of basic Jacobi fields, of the Levi-Civita connection and of the curvature tensor, respectively. Then, they satisfy three partial differential equations YS = -SN, YN+N = NィイD12ィエD1+R, YYS+YS = -SR. At the origin, S = I (the unit matrix), N = 0 and R = 0. Given one of S, N, R, we can solve partial differential equations written above to find two others in one and only one way. In particular, we have S = (σィイD2jィエD2ィイD1BィエD1), from which we obtain a metric tensor gィイD2jkィエD2 via the equality gィイD2jkィエD2 = σィイD2jィエD2ィイD1AィエD1γィイD2ABィエD2σィイD2kィエD2ィイD1BィエD1 in a neighborhood of x = 0. In this way, we can define a metric from any element of V because N and R belong to V, and vice versa. Less

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] 島倉紀夫: "Normal coordinate systems from a view point of real analysis"Tohoku Math.J.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 島倉紀夫: "偏微分方程式の基本解"数学. 50-4. 403-420 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 高木泉,Wei-Ming Ni,Juncheng Wei: "On the location and profile of spike-layer solutions for a singularly perturbed semilinear Dirichlet problem : ..."Duke Math.J.. 94. 597-618 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 藤家雪朗: "Semiclassical representation of the scattering matrix by a Feynman integral"Comm.in Math.Physics. 198. 407-425 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 長澤壮之: "Construction of weak solutions of the Navrer-Stokes equation on Riemannian manifold"Advances in Math.Sci.. 9-1. 51-71 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 堀畑和弘: "The evolution of harmonic maps"Tohoku Math.Pull.. 11. 1-111 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 猪狩惺: "Real Analysis-With an Introduction to Wavelet Theory"American Mathematical Society. 256 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N. Shimakura: "Normal coordinate systems from a view point of real analysis"Tohoku Math. J.. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Shimakura: "Henbibunhouteisiki no kihonkai (Elementary solutions to partial differential equations, in Japanese)"Sugaku. 50-4. 403-420 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Takagi, Wei-Ming Ni and Juncheng Wei: "On the location and profile of spike-layer solutions for perturbed semilinear Dirichlet problem : Intermediate solutions"Duke Math. J.. 94. 597-618 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Fujie: "Semiclassical representation f the scattering matrix by a Feynman integral"Comm. in Math. Physics. 198. 407-425 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Nagasawa: "Construction of weak solutions of the Navier-Stokes equations on Riemannian manifold by minimizing variational functionals"Adv. in Math. Sci.. 9-1. 51-71 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Horihata: "The evolution of harmonic maps"Tohoku Math. Publ.. 11. 1-111 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Igari: "Real Analysis"American Math. Soc.. 1-256 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi