• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Global Analysis of Painleve Equations

Research Project

Project/Area Number 10440058
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionKobe University

Principal Investigator

TAKANO Kyoichi  Kobe Univ Faculty of Science, Professor, 理学部, 教授 (10011678)

Co-Investigator(Kenkyū-buntansha) YAMADA Yasuhiko  Kobe Univ. Grad. School of S.& T., Asso. Prof, 自然科学研究科, 助教授 (00202383)
NOUMI Masatoshi  Kobe Univ. Grad. School of S.& T., Professor, 自然科学研究科, 教授 (80164672)
SASAKI Takeshi  Kobe Univ. Faculty of Science, Professor, 理学部, 教授 (00022682)
TAKEI Yoshitsugu  Kyoto Univ. RIMS, Asso. Prof., 数理解析研究所, 助教授 (00212019)
IWASAKI Katsunori  Kyushu Univ. Dept. of Math., Professor, 数理学研究科, 教授 (00176538)
Project Period (FY) 1998 – 2000
KeywordsPainleve equations / Higher order Painleve equations / Garnier systems / Affine Weyl group symmetries / Backlund transformations / Spaces of initial conditions / Hamiltonian structures / Exact WKB analysis
Research Abstract

1. Symmetries of Painleve equations : Theory of Backlund transformations (realization of affine Weyl groups) for Painleve equations has been constructed. The theory gives not only good perspective but also usefull tools to the study of Painleve equations. For example, we can easily obtain the form of each Backlund transformation as birational transformation and various kinds of special polynomials associated with Painleve equations. Similar theory is now being devepoled for discrete Painleve equations.
2. The spaces of initial conditions : (1) A relation between the spaces of initial conditions and Backlund transformations has been made clear, namely, the manifold obtained by patching affine charts via Backlund transformations are isomorphic to Okamoto's space of initial conditions. Fromx this fact, we can derive that the spaces of initial conditions whose papameters are equivalent under the affine Weyl group are isomorphic to each other. (2) Spaces of initial conditions for a higher order Painleve equation of type A^<(1)>_4 and degenerated Garnier systems of two variables have been obtained.
3. Exact WKB analysisi : (1) The connection problem for the second Painleve equation with a large paraneter has been solved by the use of exact WKB analysis. The connection formulas are given by compositions of those for the first Painleve equation with a large parameter. For this purpose, a reduction theorem to Birkhoff's normal form has been shown. The usual steepest descent method has been extended to one for third order linear differential equations.
4. Hypergeometric equations : A problem of studying Schwarz theory in the case where all parameters are pure imaginary numbers has been proposed. Some experiments were carried out.

  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] K.Takano: "Defining manifolds for Painleve equations"Toward the Exact WKB Analysis of Differential Equations. 261-269 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Sasaki: "Projective surfaces defined by Appell's hypergeometric systems E_4 and E_2"Kyushu Journal of Mathematics. 55. 1-21 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Noumi: "Affine Weyl groups, discrete dynamical systems and Painleve equations"Comm.Math.Phys.. 199. 281-295 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Noumi: "Affine Weyl group symmetries in Painleve type equations"Toward the Exact WKB Analysis of Differential Equations. 245-259 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Iwasaki: "Recent progress in polyhedral harmonics"Acta Applicandae Mathematicae. 60. 179-197 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kawai: "WKB analysis of Painleve transcendents with a large parameter III"Adv.in Math.. 134. 178-218 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 河合隆裕: "特異摂動の代数解析学"岩波書店. 132 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 野海正俊: "パンルヴェ方程式-対称性からの入門"朝倉書店. 204 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Takano: "Difining manifolds for Painleve equations"in "Toward the exact WKB analysis of differential equations, linear or nonlinear"(Eds.T.Kawai and Y.Takei), Kyoto Univ. Press, Kyoto.. 261-269 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Takano: "Confluence processes in defining manifolds for Painleve systems"to appear in. Tohoku J.Math..

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sasaki: "Projective surfaces defined by Appell's hypergeometric systems E_4 and E_2"Kyushu J.Math.. 55. 1-21 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Noumi and Y.Yamada: "Affine Weyl groups, discrete dynamical systems and Painleve equations"Comm.Math.Phys.. 199. 281-295 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Noumi and Y.Yamada: "Affine Weyl group symmetries in Painleve type equations"in"Toward the exact WKB analysis of differential equations, linear or non-linear"(Eds.C.J.Howls, T.Kawai, Y.Yakei), Kyoto Unviersity Press, Kyoto. 245-259 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Iwasaki: "Polytopes, invariants and harmonic functions"in"Arrangements-Tokyo 1998", M.J.Falk and H.Terao eds., Advanced Studies in Pure Mathematics 27, Kinokuniya, Tokyo. 145-156 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Iwasaki and Y.Kamimura: "Inverse bifurcation problem, singular Wiener-Hopf equations and mathematical models in ecology"Journal of Mathimatical Biology.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kawai, Y.Takei: "WKB analysis of Painleve transcendents with a large parameter."Adv. in Math.. 134. 178-218 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kawai and Y.Takei: "Algebraic Analysis of Singular Perturbations (in Japanese)"Iwamami, Tokyo, Japan. 132 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Eds.K.Takano and M.Noumi: "Prospective of Painleve Equations (in Japanese) Rokko Lectures in Mathematics 7"Kobe Univ. 194 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Noumi: "Painleve Equations-An Introducation from the Viewpoint of Symmetries (in Japanese)"Asakura, Tokyo, Japan. 204 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi