• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Robust Implementation of 4-D Geometric Algorithm and Applications

Research Project

Project/Area Number 10450040
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Engineering fundamentals
Research InstitutionThe University of Tokyo

Principal Investigator

SUGIHARA Kokichi  Graduate School of Engineering, The University of Tokyo, Professor, 大学院・工学系研究科, 教授 (40144117)

Co-Investigator(Kenkyū-buntansha) INAGAKI Hiroshi  Toyota Advanced Institute of Technology, Dept. of Information Engineering, Associate Professor, 情報工学科, 助教授 (40213110)
NISHIDA Tetsushi  Graduate School of Engineering, The University of Tokyo, Assistant, 大学院・工学系研究科, 助手 (80302751)
HAYAMI Ken  Graduate School of Engineering, The University of Tokyo, Associate Professor, 大学院・工学系研究科, 助教授 (20251358)
IMAI Toshiyuki  Graduate School of Engineering, The University of Tokyo, Professor, システム工学部, 助教授 (90213214)
Project Period (FY) 1998 – 2000
Keywords4-d convex hull / Delaunay diagram / crystal Voronoi diagram / exact computation / Lazy evolution / collision-avoidance path
Research Abstract

The incremental algorithm for constructing 4-dimensional convex hull of points was re-designed into a numerically robust algorithm. In the new algorithm, all the decisions on the topological structure are done by exact arithmetic using about five-times longer expression of integers, and geometric degeneracy is avoided by the symbolic perturbation technique. Also the computation is accelerated by floating-point filter, in such a way that computation is first done in floating point arithmetic and is switched to the exact arithmetic only when the precision turns out to be insufficient, This algorithm was applied to robust implementations of algorithms for many 3-dimehsional geometric structures, including the Voronoi diagram, the Delaunay diagram, the Laguerre Delaunay diagram, farthest-point Delaunay diagram, intersections of half spaces. The resulting source codes were made open for public use in the supervisor's web page.
The other 4-dimensional geometric structure considered in this research is the time-space structure. In particular, robust algorithms for simulating crystal growth was designed and implemented using finite-difference techniques. This algorithm was applied to the construction of collision-free paths for a robust moving among hostile enemy robots.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] H.Hiyoshi, K.Sugihara: "An inerpolant based on line segment Voronoi diagrams"Discrete and Computational Geometry, Lecture Notes in Computer Science. 1763. 119-128 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kokichi Sugihara: "Three-dimensional convex hull as a fruitful source of diagrams"Theoretical Computer Science. 235. 325-337 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hiroshima, Y.Miyamoto, K.Sugihara: "Another proof of polynomial-time recognizability of Delaunay graphs"JEICE Transactions on Fundamentals. E83-A・4. 627-638 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Hiyoshi, K.Sugihara: "A sequence of generalized coordinate systems based on Voronoi diagrams and its application to interpolation"Proceedings of Geometric Modeling and Processing 2000. 129-137 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Hiyoshi, K.Sugihara: "Voronoi-based interpolation with higher continuity"Proceedings of the 16th Annual Symposium on Computational Geometry. 242-250 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林景, 杉原厚吉: "乗法重みつき結晶成長ボロノイ図の近似構成法とその応用"電子情報通信学会論文誌. J83-A-4. 1495-1504 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Okabe, B.Boots, K.Sugihara, S.N.Chiu: "Spatial Tessellations・・・Concepts and Applications of Voronoi Diagrams, Second Edition"John Wiley and Sons. 671+XVI (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. HIYOSHI and K. SUGIHARA: "An inerpolant based on line segment Voronoi diagrams"Discrete and Computational Geometry, Lecture Notes in Computer Science. 1763. 119-128 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. SUGIHARA: "Three-dimensional convex hull as a fruitful source of diagrams"Theoretical Computer Science. Vol. 235. 325-337 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. HIROSHIMA, Y. MIYAMOTO and K. SUGIHARA: "Another proof of polynomial-time recognizability of Delaunay graphs"IEICE Transitions on Fundamentals. Vol. E83-A, No. 4. 627-638 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. HIYOSHI and K. SUGIHARA: "A sequence of generalized coordinate systems based on Voronoi diagrams and its application to interpolation"Proceedings of Geometric Modeling and Processing, (April, 2000, Hong Kong). 129-137 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. HIYOSHI and K. SUGIHARA: "Voronoi-based interpolation with higher continuity"Proceedings of the 16th Annual Symposium on Computational Geometry (June, 2000, Hong Kong). 242-250 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. KOBAYASHI and K. SUGIHAR: "Approximation of multiplicatively weighted crystal growth Voronoi diagram and its application"The Transactions of IEICE. J83-A, No. 12. 1495-1504 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. OKABE, B. BOOTS, K. SUGIHARA and S.-N. CHIU: "Spatial Tessellations Concepts and Applications of Voronoi Diagrams, Second Edition"John Wiley and Sons. 671 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi