• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

How much are the module categories of the principal blocks controlled by the Brauer categories?

Research Project

Project/Area Number 10640012
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOchanomizu University

Principal Investigator

ENOMOTO Yoko  Ochanomizu University, Faculty of Science, Professor, 理学部, 教授 (90151993)

Co-Investigator(Kenkyū-buntansha) KIYOTA Masao  Tokyo Medical and Dental University, Professor, 教養部, 教授 (50214911)
UNO Katsuhiro  Osaka University, Graduate School of Science, A. Professor, 大学院・理学研究科, 助教授 (70176717)
HORIE Mitsuko  Ochanomizu University, Faculty of Science, Assistant, 理学部, 助手 (70242336)
Project Period (FY) 1998 – 1999
Keywordsblock / defect group / Morita equivalence / derived equivalence / group ring
Research Abstract

Let G be a finite group and BィイD2oィエD2 (G) be the principal 3-block of G (over a complete valuation ring). We proved the follwing theorem ( , were Morita equivalence means having the same module category).
Theorem.
(1) If q ≡ 2, 5 (mod 9), then the (groups PGU(3,qィイD12ィエD1) have the same Brauer category and BィイD20ィエD2 (PGU(3,qィイD12ィエD1)) and BィイD20ィエD2(PGU(3,2ィイD12ィエD1)) are Morita equivalent.
(2) If q ≡ 4, 7 (mod 9), then the (groups PGL(3,q) have the same Brauer category and BィイD20ィエD2 (PGL(3,q) and BィイD20ィエD2(PGL(3,4) are Morita equivalent.
(3) If q ≡ 2, 5 (mod 9), then the (groups SU(3,qィイD12ィエD1) have the same Brauer category and BィイD20ィエD2 (SU(3,qィイD12ィエD1)) and BィイD20ィエD2(SU(3,2ィイD12ィエD1)) are Morita equivalent.
(4) If q ≡ 4, 7 (mod 9), then the (groups SL(3,q) have the same Brauer category and BィイD20ィエD2 (SL(3,q)) and BィイD20ィエD2(SL(3,2) are Morita equivalent.
(5) If q ≡ 2, 5 (mod 9), then the (groups GU(3,qィイD12ィエD1) have the same Brauer category and BィイD20ィエD2 (GU(3,qィイD12ィエD1)) and BィイD20ィエD2(GU(3,2ィイD12ィエD1)) are Morita equivalent.
(6) If q ≡ 4, 7 (mod 9), then the (groups GL(3,q) have the same Brauer category and BィイD20ィエD2 (GL(3,q) and BィイD20ィエD2(GL(3,4) are Morita equivalent.
(7) If q ≡ 2, 5 (mod 9), then the (groups GィイD12ィエD1(q) have the same Brauer category and BィイD20ィエD2 (GィイD12ィエD1)(q) and BィイD20ィエD2(GィイD12ィエD1)(2)) are Morita equivalent.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] M. Kiyota and H. Suzuki: "Character products and Q-polynomial group association schemes"Journal of Algebra. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. kawata, G. Michler and K. Uno: "On simple modules in the Auslander-Reiten components of finite groups"Math. Zeitschrift. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] C. Bessenrodt and K. Uno: "Chracter relations and simple modules in the Auslander-Reiten graph of the symmetric groups and their covering groups"Algebras and Representation Theory. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Enomoto and Y. Usami: "Extremal 2-connected graphs with given diameter"Tokyo Journal of Mathematics. 22. 1-16 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Kiyota and H. Suzuki: "Character products and Q-polynomial group association schemes"Journal of Algebra. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Kawata, G. Michler and K. Uno: "On simple modules in the Auslander-Reiten components of finite groups"Math Zeitshrift. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] C. Bessebrodt and K. Uno: "Character relations and simple modules in the Auslander-Reiten graph of the symmetric groups and their covering groups"Algebras and Representation Theory. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Enomoto and Y. Usami: "Extremal 2-connected graphs with given diameter"Tokyo Journal of Mathematics. 22. 1-16 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi