• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

A new quality theorem for tensor category and the equivarence of topological quantum field theories

Research Project

Project/Area Number 10640019
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionGraduate School of Mathematics, Nagoya University

Principal Investigator

HAYASHI Takahiro  Nagoya University, Graduate School of Mathematics, assistant professor, 大学院・多元数理科学研究科, 助教授 (60208618)

Co-Investigator(Kenkyū-buntansha) OKADA Soichi  Nagoya University, Graduate School of Mathematics, Assistant professor, 大学院・多元数理科学研究科, 助教授 (20224016)
NAKANISHI Tomoki  Nagoya University, Graduate School of Mathematics, Assistant professor, 大学院・多元数理科学研究科, 助教授 (80227842)
TSUCHIYA Akihiro  Nagoya University, Graduate School of Mathematics, professor, 大学院・多元数理科学研究科, 教授 (90022673)
OHTA Hiroshi  Nagoya University, Graduate School of Mathematics, Assistant professor, 大学院・多元数理科学研究科, 助教授 (50223839)
Project Period (FY) 1998 – 2001
Keywordsquantum group / tensor category / Tannaka duality / classical invariant theory / inverse matrix
Research Abstract

For each finite split semisimple tensor category C, the canonical Tannaka duality gives a quantum group (face algebra) whose comodule category is equivalent to C. The duality gives a unified understanding of tensor categories arising from mathematics and physics, and also, it gives a new picture of the representation theory of the ordinary groups. By applying the duality and other techniques in the quantum group theory, we obtained the following results.
1. We showed that the quantum ej-symbo, is a sum of the partition functions of the ABF mode, of finite size. Also we gave a simple summation formula for the ordinary 6j-symbols.
2. By using the duality (or rather the canonical fiber functor), we constructed a bases for invariants and semiinvariants of binary quadratics and binary cubics.
3. For each tensor products of two irreducible representations of the general linear group, we gave their explicit irreducible decomposition at the module level.
4. We classified the braiding and th'e ribbon structure on each quantum classica, groups and the tensor category of type A of level L.
5. For each linearly reductive matrix group G, we give an "economical" inverse matrix formula for each elements of G.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] T.Hayashi: "Face algebras and unitarity of SU(N)_L-TQFT"Communications in Mathematical Physics. 203. 211-247 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hayashi: "Galois quantum groups of II_1-Subfactors"Tohoku Mathematical Journal. 51. 365-389 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hayashi: "Coribbon Hopf (face) algebras generated by lattice models"Journal of Algebra. 233. 614-641 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hayashi: "A brief introduction to face algebras"Contemporary Mathematics. 267. 161-176 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Hayashi: "Face algebras and unitarity of su(n)-TOFT"communications in Mathematical Physics. 203. 211-247 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Hayashi: "Galois quantum groups of II-subfactors"Tohoku Mathematical Journal. 51. 365-389 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Hayashi: "Coribbon Hopf (face) algebras generated by lattice models"Journal of Algebra. 233. 614-641 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Hayashi: "A brief introduction to face algebras"Contemporary Mathematics. 267. 161-176 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi