• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Modular Representation Theory of Algebraic Groups

Research Project

Project/Area Number 10640036
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka Cith University

Principal Investigator

KANEDA Masaharu  Osaka City University, Faculty of Science, Professor, 理学部, 教授 (60204575)

Co-Investigator(Kenkyū-buntansha) TEZUKA Michishige  Ryukyu University, Faculty of Science, Professor, 理学部, 教授 (20197784)
YAGITA Nobuaki  Ibaraki University, Faculty of Education, Professor, 教育学部, 教授 (20130768)
TANISAKI Toshiyuki  Hiroshima University, Faculty of Science, Professor, 理学部, 教授 (70142916)
Project Period (FY) 1998 – 1999
Keywordsalgebraic groups / representation theory / positive characteristic / D-modules / Weyl modules / infinitesimal method / quantum algebras / cohomology
Research Abstract

Unlike in characteristic 0, the D-module theory in positive characteristic remains in a dark. Inspired partly by recent introduction of holonomicity in positive characteristic by R.Bφgvad, I have tried to write down some basics of equivariant D-module theory with respect to an action of an algebraic group.
We say a module for a reductive group in positive characteristic has a good filtration if it admits a filtration whose subquotients are all Well modules. The questions of whether or not the tensor product of two modules with good filtrations remains to have a good filtration, and also of whether a module with good filtration admits a good filtration with respect to a Levi subgroup are two basic problems in the representation theory. After Wang J.-P. and S.Donkin solved the problems in most cases, O.Mathieu gave a brilliant, but a rather hard, proof in affirmative using the Frobenius splittings. It turned out that another entirely different proof was buried in Lusztig's theory of based modules. Expanding a little on Xi N.-H.'s observations, I have explained the alternative solution.
Some of fundamental cohomological results in the representation theory of algebraic groups hold over the ring of integers Z. I have quantized the Andersen-Haboush identity over the Laurent polynomial ring Z[v,vィイD1[-1ィエD1], that makes possible the quantization of classical cohomological results such as Kempf's vanishing theorem over Z[v,vィイD1-1ィエD1].
With the assistance in travel expenses I invited H. H. Andersen to work together, that has proved very fruitful. We can now describe the Jantzen filtration on infinitesimal Well modules by the Andersen filtration.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 兼田正治: "Some generalities on d-modules in positid characlesistil"Palific Journal of Mathematics. 183. 103-141 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 兼田正治: "based modules and good filtrations in algesrail groups"Hiroshima Mathematical Journal. 28. 337-344 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 兼田正治: "Cohomology of infinilesimal quantum algebras"Journal of Algebra. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 柏原正樹、谷崎俊之: "Kazhden-Lusztig conjecture for symmetatitable Kai-mody Lie algebreas III"Asian Journal of Mathematics. 2. 779-832 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] D. Raoenel. S. Wilson, 柳田信顕: "Brown-Peterson cohomology from Morava K-theury"K-theury. 15. 147-199 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 神山康彦、手塚康誠: "Topology and geomersy of equilateral pulygun linkages in the Eulideam Plane"Quarlery Journal of Mathematics. 56. 463-470 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] KANEDA M.: "Some generalities on D-modules in positive characteristic"Pacific Journal of Mathematics. 183. 103-141 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KANEDA M.: "Based modules and good filtrations in algebraic groups"Hiroshima Mathematical Journal. 28. 337-344 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KANEDA M.: "Cohomology of infinitesimal quantum algebras"Journal of Algebra. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KASHIWARA M. and TANISAKI T.: "Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras III"Asian Journal of Mathematics. 2. 779-832 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] D.RAVENEL, S.WILSON and YAGITA N.: "Brown-Peterson cohomology from Morava K-theory"K-theory. 15. 147-199 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KAMIYAMA Y. and TEZUKA M.: "Topology and geometry of equilateral polygon linkages in the Euclidean plane"Quarterly Journal of Mathematics. 56. 463-470 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi