• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

P-adic integration and Hartogs-Stawski's theorem

Research Project

Project/Area Number 10640045
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionRIKKYO UNIVERSITY

Principal Investigator

ENDOU Mikihiko  RIKKYO UNIV. COLLEGE OF SCIENCE, PROFESSOR, 理学部, 教授 (40062616)

Co-Investigator(Kenkyū-buntansha) SATOU Fumihiro  RIKKYO UNIV. COLLEGE OF SCIENCE, PROFESSOR, 理学部, 教授 (20120884)
KIDA Yuuji  RIKKYO UNIV. COLLEGE OF SCIENCE, PROFESSOR, 理学部, 教授 (30113939)
Project Period (FY) 1998 – 1999
KeywordsHartogs / Stawski / p-adic analytic function / analyticity / p-adic integration / p-adic complex number / analytic domain
Research Abstract

The purpose of this reseach is to give a correct proof of Stawski's Theorem (non-archimedean version of Hartogs' Theorem) . The first step of the resarch is to put in order Stawski's outer linear measure theory. This was done by a good advice of Alain Escassut.
A correct proof of Hartogs-Stawski's theorem was given when the underling field K is a complete, but not locally compact subfield of the p-adic complex field CィイD2pィエD2. If the value group |KィイD1xィエD1| is discrete, the following revised version of Stawski's theorem holds.
Theorem 1 If a function f (x) = f(xィイD21ィエD2, xィイD22ィエD2, ..., xィイD2nィエD2) is analytic for each variable on the domain
|xィイD21ィエD2|≦ RィイD21ィエD2,|xィイD22ィエD2|≦ RィイD22ィエD2,..., |xィイD2nィエD2|≦ RィイD2nィエD2
then the function f(x) is an analytic function in the whole variables on the domain
|xィイD21ィエD2|< RィイD21ィエD2,|xィイD22ィエD2|≦ ィイD2qィエD2RィイD22ィエD2,..., |xィイD2nィエD2|≦ ィイD2qィエD2RィイD2nィエD2
where q = |π|< 1 (πis a prime element of K) .
By symmetry we slightly extended the domain of analyticity of the functions. We also see that the Theorem holds if the field K is a general non-archimedean field which is complete, but not locally compact.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] Endo M.: "Hartogs-Stawski's theorem in discrete valued fields."Lecture note in pure and applied mathematics.. 209. 77-96 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 森本、木田、山崎: "円分数の素因数分解(その4)"上智大学数学講究録. 42. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] F.Sato, Y.Hironaka: "Local densities of representations of quadratic forms over p-adic integers : the non-dyadic case."J. of Number Theory..

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] F.Sato: "b-Functions of prehomogeneous vector spaces attached to flag manifolds of the general linear group,"Comment. Math. Univ. St. Pauli. 48. 129-136 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] ENDO, Mikihiko: "Hartogs-Stawski's theorem in discrete valued fields."Lecture note in pure and applied mathematics.. 209. 77-96 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] SATO, Fumihiro & HIRONAKA, Yumiko: "Local densities of representations of quadratic forms over p-adic integers : the non-dyadic case"Journal of Number Theory.. 19.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] SATO, Fumihiro: "b-Functions of prehomogeneous vector spaces attached to flag manifolds of the general linear groups."Commentarii Mathematici Universitatis Sancti Pauli.. 48. 129-136 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] MORIMOTO, Mitsuo. KIDA, Yuji & YAMAZAKI: "Prime decomposition of cyclotomic numbers IV."Lecture note in Jochi University.. 42. (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi