• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Annual Research Report

Almost-Dense拡大郡の研究

Research Project

Project/Area Number 10640051
Research InstitutionTOBA NATIONAL COLLEGE OF MARITIME TECHNOLOGY

Principal Investigator

奥山 京  鳥羽商船高等専門学校, 一般教育, 助教授 (20177190)

Co-Investigator(Kenkyū-buntansha) 佐波 学  鳥羽商船高等専門学校, 講師 (10226029)
名城 紘昭  鳥羽商船高等専門学校, 教授 (40043252)
KeywordsADE群 / 初等ADE群 / T高部分群 / moho部分群 / almost-dinsc部分群 / 準純粋包をもつ部分群 / 高度行列 / 準基
Research Abstract

1998年の研究成果報告の中にも書きましたように、その中に少し間違いが発見されました。即ち、「各素数pに対して、そのpパートがseparableであるADE群は、そのpパートが巡回群の直和となる」ということです。これには反例があることがわかりました。
そこで、p群には基部分群がありますが、この概念を一般の無限アーベル群に拡張できることに気付きました。まず任意の無限アーベル群には基部分群が存在することを証明しました。ADE群Gの基部分群Lは初等ADE群になります。p群には、「すべての基部分群は同型である」というよく知られた定理がありますが、このADE群Gでも、やはりすべての基部分群は同型になることも証明しました。
従って、Torsion-Free Rank 1のADE群Gにも基部分群が存在しますが、それは初等ADE群ですから、1998年の研究成果を使うと、基部分群のmoho部分群、QT行列がそのままこの群Gのmoho部分群、QT行列になるから、Torsion-Free Rank 1のADE群に構造定理が与えられます。逆に、Torsion部分群T、Torsion-Free Rank 1の群Aと、各素数に対して、ある条件をもつ2行加算列の行列を与えると、群Tが最大ねじれ群となり、群Aがmoho部分群となり、その行列をQT行列にもつADE群が存在するということもわかりました。これが存在定理です。
Torsion-Free Rank 1のADE群の分類には、準基の概念が使えることに気付き、それを使ってそのようなADE群を分類しました。「Torsion-Free Rank 1の加算濃度の群は、その最大ねじれ部分群とその群の高度行列によって決まる」という有名な定理がありますが、Torsion-Free Rank 1のADE群も同様のことがいえます。しかし必ずしも加算濃度ではないので、この結果は、この有名な定理の部分拡張であるといえるでしょう。

  • Research Products

    (3 results)

All Other

All Publications (3 results)

  • [Publications] 奥山京: "On Almost-Dense Extension Groups of Torsion-Free Groups"Journal of Algebra. 202. 202-228 (1998)

  • [Publications] 奥山京: "On Purifiable Subgroups in Arbitrary Abelian Groups"Communications in Algebra. 28-1. 121-139 (2000)

  • [Publications] 奥山京: "On Kernels of Purifiability in Arbitrary Abelian Groups"Hokkaido Journal of Mathematics. (2000)

URL: 

Published: 2001-10-23   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi