• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Differential Geometric Approach to Foliated Structures.

Research Project

Project/Area Number 10640055
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionIwate University

Principal Investigator

OSHIKIRI Gen-ichi  Faculty of Education, Iwate University Professor, 教育学部, 教授 (70133931)

Co-Investigator(Kenkyū-buntansha) NUMATA Minoru  Faculty of Education, Iwate University Professor, 教育学部, 教授 (50028255)
FUMIO Nakajima  Faculty of Education, Iwate University Professor, 教育学部, 教授 (20004484)
KOJIMA Hisashi  Faculty of Education, Iwate University Professor, 教育学部, 教授 (90146118)
AKIO Miyai  Faculty of Education, Iwate University Assistant, 教育学部, 助手 (70003960)
KAWADA Koichi  Faculty of Education, Iwate University Ass.Professor, 教育学部, 助教授 (70271830)
Project Period (FY) 1998 – 2000
KeywordsFoliation / Bundle-like foliation / Mean curvature function / Minimal foliation / Constant mean curvature / Totally geodesic / Minimal graph
Research Abstract

(a) We get the following result :
Let (M,F,g) be a codimension-q bundle-like foliation on a closed Riemannian manifold of positive curvature. (1) If q is even, then F has a compact leaf. (2) If q is odd, then F has a leaf whose closure is a closed codimsnsion-(q-1) submanifold.
As a corollary, we extend Berger's famous result :
Any Killing vector field on a closed Riemannian manifold with positive sectional curvature admits a zero point or a closed orbit.
(b) We study the dual 1-form to the mean curvature vector of a foliation. We give a characterization of such 1-forms for codimension-one foliations. We also have a simple characterization when the foliation is a bundle foliation, and when the dual 1-form is basic.
(c) We get the following result :
Let (M,F,g) be a codimension-1 minimal foliation on a complete Riemannian manifold of non-negative Ricci curvature. If the growth of F is not greater than 2, then F is totally geodesic. Further, (M,g) is locally a Riemannina product.
As a byproduct, we get a simple proof of Mirand's result on minimal graphs, and foliated version of the result by Alencar and do Carmo on constant mean curvature hypersurfaces.

  • Research Products

    (21 results)

All Other

All Publications (21 results)

  • [Publications] G.Oshikiri: "On fundamental formulas of foliations."Ann.Rep.Fac.Edu.Iwate Univ.. 59. 67-81 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.Oshikiri: "Codimension-one foliations and oriented graphs."Tohoku Math.J.. 51. 227-236 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.Oshikiri: "Some differential geometric properties of codimension-one folitions of polynomial growth"Tohoku Math.J.. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.Oshikiri: "On transverse killing fileds of metric foliations of manifolds with positive curvature."manuscripta math.. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kojima: "Remark on Fourier coefficients of modular forms of half integral weight belonging to kohnen's spaces."J.Math.Soc.Japan. 51. 715-730 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kojima: "Remark on Fourier coefficients of modular froms of half integral weight belonging to kohnen's spexces.II."Kodai Math.J.. 22. 99-115 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.Oshikiri: "On fundamental formulas of foliations"Ann.Rep.Fac.Edu.Iwate Univ.. vol.59. 67-81 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G.Oshikiri: "Codimension-one foliations and oriented graphs"Tohoku Math.J.. vol.51. 227-236 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G.Oshikiri: "Some differential geometric properties of codimension-one foliations of polynomial growth"Tohoku Math.J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G.Oshikiri: "On transverse Killing fields of metric foliations of manifolds with positive curvature"manuscripta math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kojima: "Remark on Fourier coefficients of modular forms of half integral weight belonging to Kohnen's spaces"J.Math.Soc.Japan. vol.51. 715-730 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kojima: "Remark on Fourier coefficients of modular forms of half integral weight belonging to Kohnen's spaces II"Kodai Math.J.. vol.22. 99-115 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kojima: "On Fourier coefficients of Maass wave forms of half integral weight belonging to Kohnen's spaces"Tsukuba J.Math.. vol.23. 333-351 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kojima: "On the Fourier coefficients of Maass wave forms of half integral weight over an imaginary quadratic field"J.reine angew.Math.. vol.526. 155-179 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] F.Nakajima: "Bifurcation of nonsymmetric solutions for some Duffing equations"Bull.Austral.Math.Soc.. Vol.60. 119-128 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kawada: "A zero density estimate for Dedekind zeta functions of pure extension fields"Tsukaba J.Math.. vol.22. 357-369 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kawada and T.D.Wooley: "Sums of fifth powers and related topics"Acta Arith. vol.87. 27-65 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kawada and T.D.Wooley: "Sums of fourth powers and related topics"J.Reine Angew.Math.. vol.512. 173-223 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kawada and T.D.Wooley: "On the Waring-Goldbach problem for fourth and fifth powers"Proc.London Math.Soc.. (3)82(to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Miyai: "An explicit formula for the square of the Riemann zeta-function on the critical line"Tsukuba J.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Miyai: "On the two expressions of the explicit formulas for the square of the Riemann zeta-function"Ann.Rep.Fac.Edu.Iwate Univ.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi