• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Studies on Curvatures of Submanifolds

Research Project

Project/Area Number 10640061
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionUtsunomiya University

Principal Investigator

KITAGAWA Yoshihisa  Utsunomiya Univ., Faculty of Education, Associate Professor, 教育学部, 助教授 (20144917)

Co-Investigator(Kenkyū-buntansha) SHIRASOU Takeo  Utsunomiya Univ., Faculty of Education, Professor, 教育学部, 教授 (50007960)
OCHIAI Shoji  Utsunomiya Univ., Faculty of Education, Professor, 教育学部, 教授 (30031545)
KIMURA Shigeru  Utsunomiya Univ., Faculty of Education, Professor, 教育学部, 教授 (70007962)
FUJIHIRA Hideyuki  Utsunomiya Univ., Faculty of Education, Associate Professor, 教育学部, 助教授 (70114171)
KIMURA Hiroshi  Utsunomiya Univ., Faculty of Education, Professor, 教育学部, 教授 (70017953)
Project Period (FY) 1998 – 1999
Keywordssubmanifold / flat torus / isometric deformation
Research Abstract

In this research, using a method established by Y.Kitagawa, we studied flat tori in the unit 3-sphere SィイD13ィエD1, and obtained many interesting results. We summarize the results as follows.
(1) Isometric deformations of flat tori in SィイD13ィエD1 with nonconstant mean curvature : In this research, we studied isometric deformations of an isometric immersion f of a flat torus M into SィイD13ィエD1, and proved that if the mean curvature of f is not constant, then the immersion f admits a nontrivial isometric deformation preserving the total mean curvature.
(2) Isometric deformations of flat tori in SィイD13ィエD1 with constant mean curvature : It is easy to see that if f is an isometric immersion of a flat torus M into SィイD13ィエD1 with constant mean curvature, then f is a covering map onto a Clifford torus in SィイD13ィエD1. In this research, we classified the covering maps which admit no isometric deformation.
(3) Periodicity of the asymptotic curves of n-dimensional flat tori isometrically immersed in SィイD12n-1ィエD1 : In 1988, it was shown that if M is a 2-dimensional flat torus isometrically immersed in SィイD13ィエD1, then every asymptotic curve of M is periodic. In this research, we studied periodicity of the asymptotic curves of n-dimensional flat tori isometrically immersed in SィイD12n-1ィエD1, and proved that there exists a 3-dimensional flat torus isometrically embedded in SィイD15ィエD1 all of whose asymptotic curves have no period.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] Y.Kitagawa: "Isometric deformations of flat tori in the 3-sphere with nonconstant mean curuature"Tohoku Math. J..

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 木村茂・篠崎達剛: "数学における直勧力と思考力に関する研究"宇都宮大学教育学部付属教育実践総合センター紀要.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Ochiai: "On the computation of Boolean matrix corresponding to finite topologies"Math. Reports of Utsunomiya Univ.. 11. 1-8 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Ochiai: "On a program computing all of partitions of a given integer"Math. Reports of Utsunomiya Univ.. 12. 1-19 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 木村 寛: "小中高に一貫した数学的な問題解決の手法"宇都宮大学教育学部付属教育実践指導センター紀要. 21. 101-110 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Fujihira: "Topological Properties of Invariant Sets of Continuous Mappings"Bull. of the Fac. of Education Utsunomiya Univ.. 48. 1-4 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Fujihira: "Lenearly Interion Points of Convex Sets"Bull. of the Fac. of Education Utsunomiya Univ.. 49. 1-3 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshihisa Kitagawa: "Isometric deformations of flat tori in the 3-sphere with nonconstant mean curvature"Tohoku Math. J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Sigeru Kimura - Tatsuyoshi shinozaki: "Intuitive and thinking faculties on school mathematics ( Focusing on the instruction of geometry of junior high school level )"The Technology in Education (Bull. of the Integrated Research Center for Education Practice in Utsunomiya Univ.). (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Syoji Ochiai: "On the computation of Boolean matrix corresponding to finite topologies"Math. Reports of Utsunomiya Univ.. 11. 1-8 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Syoji Ochiai: "On a program computing all of partitions of a given integer"Math. Reports of Utsunomiya Univ.. 12. 1-19 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Kimura: "Some Common Strategies of Problem Solving on Elementary and Secondary School Mathematics"Bull. of the Center for Educational Research and Training in Utsunomiya Univ.. 21. 101-110 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hideyuki Fujihira: "Topological Properties of Invariant Sets of Continuous Mappings"Bull. of the Fac. of Education Utsunomiya Univ.. 48. 1-4 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hideyuki Fujihira: "Linearly Interior Points of Convex Sets"Bull. of the Fac. of Education Utsunomiya Univ.. 49. 1-3 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi