• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Geometry of Almost Hermitian Manifolds

Research Project

Project/Area Number 10640069
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNIIGATA UNIVERSITY

Principal Investigator

SEKIGAWA Kouei  Niigata Univ., Dept. Math., Professor, 理学部, 教授 (60018661)

Co-Investigator(Kenkyū-buntansha) INNAMI Nobuhiro  Niigata Univ., Dept. Math. and Inform. Professor, 大学院・自然科学研究科, 教授 (20160145)
WATABE Tsuyoshi  Niigata Univ., Dept. Math., Professor, 理学部, 教授 (60018257)
MATSUSHITA Yasuo  Shiga Prefectural Univ., Dept. Math., Professor, 工学部, 教授 (90144336)
Project Period (FY) 1998 – 1999
KeywordsAlmost Kaehler manifold / Quasi Kaehler manifold / Einstein manifold / Weakly *-Einstein manifold / Integrability / Holomorphic sectional curvature / Cλ-manifold / Hitchin-Thorpe type inequality
Research Abstract

The main purpose of our research project is to investigate the following subjects in Geometry of Almost Hermitian Manifolds :
(1) The Goldberg Conjecture (Compact almost Kaehler Einstein manifold is integrable)
(2) Structure of almost Hermitian manifolds of pointwise constant holomorphic sectional curvature
(3) Symplectic structures on the manifolds of closed geodesics of Cλ-manifolds
(4) Other related topics
Subject(1). It is known that the conjecture is true in the case where the scalar curvature is nonnegative. In the terms of the project, we obtained further some partial positive answers to the conjecture. For example, we showed that a 4-dimensional strictly almost Kaehler Einstein and weakly *-Einstein manifold is a Ricci flat space of pointwise constant holomorphic sectional curvature τ */8, and also that a 4-dimensional compact almost Kaehler Einstein and weakly *-Einstein manifold is Kaehler. Quite recently, we generalized the last result slightly to the case where the length of the … More skew-symmetric part of the Ricci *-tensor is constant.
Subject(2). For arbitrary almost Hermitian manifold, the constancy of holomorphic sectional curvature grantees the integrability of the almost Hermitian manifold. For example, there exists examples of compact locally flat almost Hermitian manifolds which are not integrable. So. It is natural to consider the subject (2) restricting to some special classes of almost Hermitian manifolds. In the terms of the project, we proved that a 6-dimensional quasi-Kaehler manifold of constant sectional curvature is a locally flat Kaehler manifold or a nearly Kaehler manifold of positive constant sectional curvature.
Subject(3). It is well-known that the manifold CM of all closed geodesics in Cλ-manifold M admits a symplectic structure ω and all closed geodesics through a specified point of M is a Lagrangian submanifold of CM. So, it is quaite natural to consider almost Kaehler structure associated to the symplectic structureω. Recently, we determined the manifold CM for each compact rank one symmetric space.
Subject(4) A 4-dimensional pseudo-Riemannian manifolds of metric signature (+ + - -) admits a pair of almost complex structures (J,J'). By making use of this property, we obtained Hitchin-Thorpe type inequality for 4-dimensional compact pseudo-Riemannian manifolds of metric. Further, we gave several examples of 4-dimensional double isotropic Kaehler structures on RィイD14ィエD1 equipped with pseudo-Riemannian metric of metric signature (+ + - -). In quite recent work, we also obtained two kinds of generalizations of the Hitchin's lemma with. respect to the integrability of quaternionic almost Kaehler manifolds. We have also some results for the problems in billiyard dynamics. Less

  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] 村越 記仁: "Integrability of almost quaternionic manifolds"Indian J. Math.. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小黒 隆: "Four-dimensional almost Kahler Einstein and weakly *-Einstein manifolds"Yokohama Math. J.. 47. 75-92 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 倉嶋和夫: "Notes on three-dimensional weakly symmetric spaces"Bull. Korean Math. Soc.. 36. 467-476 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 趙 宗澤: "Six-dimensional quasi-kahler manifolds of constant sectional curvature"Tsukuba J. Math.. 22. 611-627 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小黒 隆: "Four-dimensional almost Kahler Einstein and *-Einstein manifolds"Geometriae Dedicata. 69. 91-112 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 松下 泰雄: "Hitchin - Thorpe type inequalities for Pseudo-Riemannian 4-manifolds of metric signature(++--)"Geometriae Dedicata. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] E. Garcia -Rio: "Paraquaternionic Kahler manifolds"Rocky Mountain J. Math.. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] E. Garcia -Rio: "Isotropic structures on Engel 4-manifolds"J. Geometry and Physics. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 印南 信宏: "Gradient vector fields which characterize warped products"Math. Scandinavia. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 印南 信宏: "Volume, surface area and inward injectivity radius"Proc. Amer. Math. Soc.. 127. 3049-3055 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 印南 信宏: "Integral formulas for polyhedral and spherical billiards"J. Math. Soc. Japan. 50. 339-357 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N. Murakoshi, K. Sekigawa and A. Yamada: "Integrability of almost quaternionic manifolds"Indian J. Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Oguro, K. Sekigawa and A. Yamada: "Four-dimensional almost Kahler Einstein and weakly *-Einstein manifolds"Yokohama Math. J.. 47-1. 75-92 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Kurashima, T. Oguro and K. Sekigawa: "Notes on three-dimensional weakly symmetric spaces"Bull. Korean Math. Soc.. 36-3. 467-476 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] C. T. Cho and K. Sekigawa: "Six-dimensional quasi-Kahler manifolds of constant sectional curvature"Tsukuba J. Math.. 22-3. 611-627 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Oguro and K. Sekigawa: "Four-dimensional almost Kahler Einstein and *-Einstein manifolds"Geometriae Dedicata. 69. 91-112 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Matsushita and Peter Law: "Hitchin-Thorpe type inequalities for pseudo -Riemannian 4-manifolds of metric signature (++--)"Geometriae Dedicata. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E. Garcia-Rio and Y. Matsushita: "Paraquaternionic Kahler manifolds"Rocky Moutain J. Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E. Garcia-Rio and Y. Matsushita: "Isotropic strctures on Engel 4-manifolds"Geometry and Physics. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Innami: "Gradient vector fields which characterize warped products"Math. Scandinavia. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Innami: "Volume, surface area and inward injectivity radius"Proc. Amer. Math. Soc.. 127-10. 3049-3055 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Innami: "Integral formulas for polyhedral and spherical billiards"J. Math. Soc. Japan. 50-2. 339-357 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi